

The Belle II Pixel Detector for SuperKEKB

Michael Schnell schnell@physik.uni-bonn.de

> on behalf of the DEPFET Collaboration

September, 16th 2014

2 DEPFET Pixel Detector and Readout System

Overview of SuperKEKB

- Upgrade of KEKB using the same tunnel
- Asymmetric e⁺e⁻ energy collider utilizing the nanobeam scheme (10 μm x 60 nm) for a significant higher luminosity of 8 · 10³⁵ cm⁻²s⁻¹ (50x KEKB)
- B-factory with center of mass energy at the Y(4S) resonance

- Precise measurements of the CKM triangle, search for new physics in rare B-, D-meson and τ-decays
- Expect 40 times more data and an similar increase in background
 → New detector required

Belle II Detector

- Beryllium beam pipe radius: 10 *mm*
- 2 layers DEPFET Pixel Detector (PXD) with 8 million pixels at 1.4 and 2.2 cm
- 4 layers of Silicon strip Vertex Detector (SVD) using DSSDs with slanted parts at 3.8, 8.0, 11.5 and 14 cm (see next talk)

- Beryllium beam pipe radius: 10 mm
- 2 layers DEPFET Pixel Detector (PXD) with 8 million pixels at 1.4 and 2.2 cm
- 4 layers of Silicon strip Vertex Detector (SVD) using DSSDs with slanted parts at 3.8, 8.0, 11.5 and 14 cm (see next talk)

- Beryllium beam pipe radius: 10 mm
- 2 layers DEPFET Pixel Detector (PXD) with 8 million pixels at 1.4 and 2.2 cm
- 4 layers of Silicon strip Vertex Detector (SVD) using DSSDs with slanted parts at 3.8, 8.0, 11.5 and 14 cm (see next talk)

- Beryllium beam pipe radius: 10 mm
- 2 layers DEPFET Pixel Detector (PXD) with 8 million pixels at 1.4 and 2.2 cm
- 4 layers of Silicon strip Vertex Detector (SVD) using DSSDs with slanted parts at 3.8, 8.0, 11.5 and 14 cm (see next talk)

Requirements for the Pixel Detector

- Thin (low material budget) self sustaining modules to avoid MS (0.2 % X₀/layer)
- Radiation hard: 1.8 Mrad/Year
- Occupancy: < 3 %</p>
- Acceptance Angle: 17 - 155°

- Higher vertex resolution required than in Belle because of decreased boost $\beta\gamma$ = 0.28 vs 0.42 (KEKB)
- $\bullet\,$ To keep occupancy a continuous 20 μs readout mode is required

Introduction to SuperKEKB and Belle II

DEPFET Pixel Detector and Readout System

DEpleted P-channel Field Effect Transistor

- FET transistor on a fully depleted silicon bulk
- Additional n-implant causing a potential minimum below the transistor channel (internal gate)
- Electrons are stored in the internal gate modulating the p-channel current (internal amplification g_q =~ 500 pA/e⁻)
- Clear process required to remove the stored charges

Clear process

DEPFET Matrix Readout

- DEPFET pixels arranged in a matrix
- Constant "rolling shutter" readout (four rows each time)
- Long drain and gate/clear lines to place chips on the balcony out of the active area
- Only active rows consume power, the others are still sensitive to charge
- Several ASICs required (Switcher, Current Digitizer...)

Michael Schnell

Thinning Technology

Top Wafer

back side implantations

Handle Wafer

wafer bonding and thinning

- Use anisotropic etching down to 75 μm on active area
- Balcony for steering ASICs and support frame
- 90 steps involved in Wafer processing

75 µm active area thickness	2 mm / 420 µm rigid frame	430 un 75 um			process -> passivation	
[Bump bonde	d chips	Thinned sensor (75 p	um)	Support frame	

Building a DEPFET Ladder

Michael Schnell

- Windmill structure to keep Switchers from sensitive area
- Challenging task: 40 sensors and 560 ASICs on $4.5 \cdot 10^{-5} m^3$
- 40 half modules each $4 \cdot 1.6 \ Gbps = 256 \ Gbps$
 - \rightarrow Needs data reduction

Background		
QED	0.8 %	0.3 %
Touschek	< 0.03 %	< 0.03 %
Radiative Bhabha	< 0.13 %	< 0.13 %
Beam-Gas	< 0.01 %	< 0.01 %
Total	< 1.0 %	< 0.5 %

- Synchroton radiation studies ongoing
- An average BB event creates 10 tracks
- PXD is dominated by background hits!

Michael Schnell

DAQ System: Zero Suppression

Data Handling Processor

- Common mode and pedestal correction
- First step of data reduction (zero suppression)
- Data handling up to 2.6 % occupancy without loss
- Controls Switchers and DCD
- High speed data transfer with pre-emphasis link driver (50 cm Kaptonflex + 15 m Infiniband cable)

Michael Schnell

DAQ System: Data Handling Hybrid (DHH) universitätbonn

18/32

Load balancing: 3 layer 2 and 2 layer 1 per DHHC Ruilt on Virtex 6 EBC As in ATCA

Controller (DHHC)

 Built-on Virtex 6 FPGAs in ATCA standard

5 DHHs connected to one DHH

- Tasks of the DHH system:
 - Distribute timing and slow control signals to PXD FEE
 - Clustering of pixel data
 - Converting of LVDS high speed to optical signal (connected to ONSEN)

DAQ System: ONline SElector Node

ONline SElector Node (ONSEN)

- Build on the xTCA standard
- Using Advanced Mezzanine Cards (AMC) with Virtex 5 FPGA
- Receives data from DHHC over 6.25 Gbps optical links
- Performance data reduction over pixel selection with Region Of Interests (ROI)
- Sends data to EVent Builder (EVB) over Gbit Ethernet.

Data Reduction Idea with SVD Tracking

- Idea: Use hits of the surrounding strip detector, find and fit tracks, back extrapolate on the PXD and create Region of Interest (ROI)
- Complementary approach with two systems to save as much physics data as possible
- HLT: Track reconstruction based on sector-neighbour finding and neural network
- DATCON: Fast FPGA-based track reconstruction system using the Fast Hough Transformation Michael Schnell

Data Reduction Idea with SVD Tracking

- Idea: Use hits of the surrounding strip detector, find and fit tracks, back extrapolate on the PXD and create Region of Interest (ROI)
- Complementary approach with two systems to save as much physics data as possible
- HLT: Track reconstruction based on sector-neighbour finding and neural network
- DATCON: Fast FPGA-based track reconstruction system using the Fast Hough Transformation Michael Schnell

2 DEPFET Pixel Detector and Readout System

DESY Testbeam Setup (Jan. 2014)

- Common PXD and SVD beam test in January 2014 at DESY with an up to 1 T magnet field
- One sensor representing one layer
- Prototype of every DAQ components involved in the later data chain

- CO₂ cooling, slow control and environmental sensors
- Goal: Overall concept operation

Former Testbeam Setup: From This...

Former Testbeam Setup: From This...

New Testbeam Setup: To This!

Michael Schnell

New Testbeam Setup: To This!

Michael Schnell

Installed PXD

- Prototype of every DAQ components involved in the later data chain: DHH, DHHC, ONSEN, HLT, DATCON
- Testing of clustering and Region of Interests scheme
- Trigger distribution (over TLU) successfully tested
- Tested up to (random) trigger rates of 1.5 kHz

Example Event from Testbeam

Accumulated Region of Interests Map

Accumulated Region of Interests Map

Michael Schnell

30 / 32

- Belle II requires a new inner Vertex detector to cope with increased luminosity and higher vertex reconstruction demands
- The DEPFET technology comply with all these demands
- DESY testbeam proved the principle working conditions of all involved parts: sensors, DAQ system and software/algorithms
- Lessons learned from "real" long-term operation at DESY for the final detector
- Final sensor production started

Thank you for your attention!

Sensor Description

IO6

- Represents layer 2
- 50x75 μm
- 640 drain lines (3 DCDs, DHPs)
- 160 gate/clear lines (5 Switchers)

J00

- Represents layer 1
- 50*x*75 μ*m*
- 480 drain lines (3 DCDs, DHPs)
- 120 gate/clear lines (4 Switchers)

