

Upgrades of CMS inner tracker for HL-LHC (pixels)

Marco Musich on behalf of the CMS Collaboration

Università degli Studi di Torino / INFN Torino

VERTEX 2014:

23rd International Workshop on Vertex Detectors, Charles University – Prague, Mácha Lake, Doksy (Czech Republic), 15th – 19th September 2014

16.07.2014

Introduction

- CMS pixel phase-II upgrade motivations
- Detector operating conditions
- Detector layout choices
- Readout chip specifications
- Possible sensor choices
- Conclusions

CMS pixel phase-II upgrade motivations

- Room and secif cations
- Rossible sensor chaices

16.07.2014

Phase II upgrade motivations

Major achievement of LHC: Higgs discovery in 2012!

That's not the whole story, are other questions that need to be answered

- Need to investigate the entire Higgs sector
 - Higgs coupling and property measurements;
 - Di-Higgs searches with the aim of Higgs self coupling measurement;
 - Vector Boson Scattering (VBS) measurements (crucial forward tagging jets).
- Standard Model (SM) measurements
 - Precision measurements (e.g. M_w , sin θ_w , α_s)
 - Search for rare SM processes, enhanced by BSM (e.g. $B_{s,d} \rightarrow \mu\mu$)
 - Differential measurements of W, Z, diboson, Top

Luminosity	300/fb	3000/fb			
Coupling parameter	7-parameter fit				
K _y	5-7%	2-5%			
k _g	6-8%	3-5%			
k _w	4-6%	2-5%			
k _z	4-6%	2-4%			
k _u	14-15%	7-10%			
k _d	10-13%	4-7%			
k,	6-8%	2-5%			
Γ _Η	12-15%	5-8%			

Phase II upgrade, some motivations

Eff ciency cut f ow for $H \rightarrow ZZ \rightarrow \mu\mu\mu\mu$

- Conf-3: sub-detectors have same angular acceptance as current version, but central tracking detector and the forward electromagnetic calorimeters are replaced and improved
- Conf-4: tracking, electromagnetic and hadronic calorimetry, and muon detector, are increased in acceptance up to η ~ 4.

16.07.2014

Detector operating conditions

dout chip sectifications

Rossiele sensor choices

HL – LHC environment

LHC								HL-LHC									
Ru 8x10 ³⁴ 30/fb E=7-8 BX=50 <pu>~</pu>	I n1 s⁻¹cm⁻¹ TeV ns ∽20-30	2 L	.S1	2x1 300 E=1 BX= <pl< th=""><th colspan="2">Run2 2x10³⁴s⁻¹cm⁻² 300/fb E=13-14 TeV BX=25ns <pu>~50</pu></th><th></th><th colspan="2">LS2</th><th>2x10 300ft E=14 BX=2 <pu></pu></th><th>Run 34s⁻¹c TeV 25ns ~50</th><th>3 m⁻²</th><th>L</th><th>.S3</th><th></th><th>Pc 5x1 300 E=` BX: <pl< th=""><th>5 stLS3 0³⁴s⁻¹cm⁻² 00/fb 14TeV =25ns J>~140</th></pl<></th></pl<>	Run2 2x10 ³⁴ s ⁻¹ cm ⁻² 300/fb E=13-14 TeV BX=25ns <pu>~50</pu>			LS2		2x10 300ft E=14 BX=2 <pu></pu>	Run 34s ⁻¹ c TeV 25ns ~50	3 m⁻²	L	.S3		Pc 5x1 300 E=` BX: <pl< th=""><th>5 stLS3 0³⁴s⁻¹cm⁻² 00/fb 14TeV =25ns J>~140</th></pl<>	5 stLS3 0 ³⁴ s ⁻¹ cm ⁻² 00/fb 14TeV =25ns J>~140
past	2012	2013	2014	2015	2016	2017	20)18	2019	2020	2021	2022	2023	2024	20	25	future

- High Luminosity (HL) LHC: upgrade damaged low-β triplets and install crab-cavities to optimise bunch overlaps
- √s = 14 TeV!
- $L_{inst} = 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ ($\rightarrow \sim 10 \text{ times now}$) i.e. $L_y = 250 \text{ fb}^{-1}$ / year ($L_{total} \sim 3000 \text{ fb}^{-1}$ in 10 years)
- 25ns bunch spacing and $\langle PileUp \rangle = 140 (\rightarrow now 25)$
- Radiation @30 mm from IP: $2x10^{16} n_{eq} / cm^2 (\rightarrow \sim 10 \text{ times Phase-I})!$
- Dose @30 mm from IP: 10 MGy (1 Grad)!
- Hit rate: $\sim 2 \text{ GHz} / \text{cm} 2 (\rightarrow \sim 10-20 \text{ times current one})$

Huge R&D is required to cope with harsh environment

Pixel Detector operating conditions

- Overall tracking performance degradation with ageing:
 - After 500 fb⁻¹ impact parameter degradation of more than 50%;
 - <PU> = 140 imply an irreducible data loss of ~7%.
- Effects on the physics program:
 - Efficiency loss diminishes effectiveness of high-p_τ lepton isolation, and degrades jet energy and missing transverse energy resolution!
 - Fake tracks cause biases and resolution degradation in jet energy measurements, increase background levels, and adversely affect high-p_τ lepton isolation criteria.

Detector layout choices

doct chip specifications

16.07.2014

Pixel detector layout choices

- Improve resolution at high-p_T and improve two-track separation → increase granularity (present tracker has degraded track finding performance in high-energy jets due to hit merging in the pixel detector)
- Improve resolution at low- p_{T} and reduce secondary interactions \rightarrow reduce material
- Increase forward acceptance (to cover peak production region of jets from Vector Boson Fusion and and VBS, among highest priorities of the physics program, by mitigating PU effects in jet-ID and energy measurement)
 - 4 barrel layers (\rightarrow 3 layers now)
 - 10+10 forward disks, covering up to $\eta \simeq 4$ (2+2 disks now, up to $\eta \simeq 2.4$)
- Preserve "ease-to-access" of current detector (possibility to replace degraded parts during TS)

16.07.2014

Basic Pixel Detector design concepts

Sensor pixel cell size:

- Aim to large chip: ~20x20 mm² (current FEI4 dimensions)
- Readout chip channel size: 50x50 µm²
- Target sensor cell: 50x50 μm² or 25x100 μm²
- Staggered bumps:
 - possibility to switch off 1/2 or 3/4 pixels (e.g. outer regions with pixels of 100x100 μm² or 50x200 μm²)

Readout chip:

Total active area ~ 4 m² (1.5 x Phase1)

Pixel Detector Layout studies

Barrel Geometry: two module types
 Forward Geometry: two possible coverage schemes considered projective hole at z=0

- Numbers/layer
- Tile modules: 4x2,4x1,2x2
- Petal modules: 4x2, 2x1
- Chip size 21x23 mm² active area

Geometry	Coverage	Overlap	# modules	# chips
Tiles	89%	12%	26	160
Petals	98%	45%	44	232

16.07.2014

Pixel detector layout studies

Config. #5 has ~1/2 channels of #1!

6.07.2014

Readout chip specifications

Pixel Readout Chip specifications

Generation	Present	Phase-I	Phase-II		
Pixel size	100x150 µm²	100x150 µm²	50x50 (25x100) µm²		
Sensor, Thickness	2D, 285 µm	2D, 285 µm	thin 2D, 3D		
Chip size	8x10mm ²	8x10mm ²	> 20x10 mm ²		
Transistor	1.3x10 ⁶		~10 ⁹		
Hit rate	100 MHz / cm ²	400 Mhz/ cm ²	~ 2 GHz / cm ²		
Hit memory per chip	0.1 Mb	1 Mb	~ 16 Mb		
Trigger rate	100 kHz	100 kHz	~ 1 MHz		
Trigger latency	3.2 µs	3.2 µs	~ 12 µs		
Readout rate	40 Mb/s	400 Mb/s	~ 2 Gb/s		
Radiation	15 Mrad, r=42 mm L = 150 fb ⁻¹	120 Mrad, r=29 mm, L = 500 fb ⁻¹	1 Grad, r=30mm, L = 3000 fb ⁻¹		
Technology	250 nm	250 nm	65 nm		
Architecture	Analog	Digital	Digital		
Buffer location	End of Column	End of Column	Pixel		
Power	~ 0.15 W/ cm ²	~ 0.15 W / cm ²	~ 0.3 – 0.5 W / cm ²		

16.07.2014

Pixel readout chip and data link specifications

- Possibility to tune bias currents of analogue front-end to account for different sensor choices
- Digital hit processing, including trigger latency buffer, implemented in pixel regions (e.g. 2x2 or 4x4pixels) followed by data merging, formatting and readout after the first level trigger accept (price of local digital processing: digital noise injection into the front end to be controlled. Clocks and trigger signals must be distributed throughout the pixel matrix)

16.07.2014

Radiation hardness of 65 nm CMOS technology

- Among other effects, PMOS-FETs (especially minimum size ones) show large transconductance degradation vs. dose (becomes very steep at dose > 100 Mrad)
- Damage mechanism have yet to be fully understood
- It appears that some of the radiation damage in the chip could be annealed with high temperatures → possibly define plausible annealing scenarios during detector maintenance to optimise longevity of sensors and electronics (detailed evaluation of annealing effects on sensor performance)

Possible sensor choices

16.07.2014

Possible sensor choices

Radiation tolerance dominates technological choice for sensors. Possible sensors technologies:

- Favoured technology: planar Silicon
 - Define suitable *n-in-p* process and design (more cost effective than present *n-in-n*)
 - Thin thickness
 - Requires robust spark rejection material
- Alternative/complementary for innermost layer: 3D Silicon
 - Intrinsically higher radiation resistant (the shorter charge collection distance);
 - production process more expensive and not suitable for large volumes, use of 3D sensors could be limited to the small regions of highest particle fluence;
 - Define suitable sensor thickness and electrode geometry
 - Address production issues (e.g. yield and cost)

Possible sensor choices

- Signal charge and leakage current in planar
 n-in-p silicon pixel structures in different
 processes and isolations (irradiation 1.3x10¹⁶
 n_{eq} / cm²)
- Signal charge in 3D n-in-p silicon pixel structures from different vendors and with different column configurations (before and after irradiation up to 3.5 10¹⁵ n_{eq} / cm²)

Need to define:

- Sensor thickness
- Sensor process (FZ, MCz, EPI)
- Spark rejection material
- Pixel isolation and bias scheme

Need to define:

- Column electrodes positions and size
 → sensor thickness
- Production process: single/double sided

Thin planar Silicon sensors: thin thickness

Assumptions:

- Noise 150 e⁻ and other readout and calibration effects are small
- Extrapolate irradiated Silicon model, tuned on data up to
- $1.2x10^{15}$ neq / cm^{2,} to larger fluence, $4.8x10^{15}$ n^{eq} / cm²
- Average E-fields of 50 kV / cm can be achieved

- Higher fields with same bias → shorter drift time → less trapping → ultimately, better radiation hardness
- Reduced full-depletion voltage
- Smaller clusters → reduce merged cluster fraction in dense jets
- At very high fluences thick and thin planar sensors give similar charge

[•] Thin planar sensors advantages:

Conclusions

- Pixel detector operating conditions during Phase-II are extremely challenging
 - Pile-Up = 140
 - Radiation @ 30 mm from IP: 2x10¹⁶ n_{eq} cm²
 - Dose @ 30 mm from IP: 10 MGy (1Grad)
 - Hit rate ~ 2 GHz/ cm²
- Final detector layout and geometry is under definition
- Redout chip development (Atlas-CMS collaboration): 65 nm candidate technology → need to demonstrate radiation hardness up to foreseen 10 years operation at HL-LHC
- Sensor development: Silicon thin planar n-in-p (and/or Silicon 3D for innermost layer) candidate technology → need to define sensor process, bias isolation geometry, thickness, electrode geometry.

Still a lot of work ahead (hopefully) leading to future physics discoveries!

16.07.2014

Phase I - post 2017 Pixel Detector

- The Phase1 pixel detector is an improved version of the current pixel detector.
- 4 layers / 3+3 disks (100x150 μm², n⁺-in-n): improved track resolution and eff ciency
- New readout chip: reduced dynamic ineff ciency at high rate and PU
- Reduced material: CO₂ cooling, new cabling and DC-DC powering scheme
- Will be installed during the 2016 Technical Stop; a pilot disk 3 blade is being installed for 2015 for testing

Fluences

- Left: map of the expected particle fluence in the Tracker volume corresponding to an integrated luminosity of 3000 fb⁻¹, expressed in terms of 1 MeV neutron equivalent fluence.
- Right: detail of the fluence in the pixel volume. The expected fluence has a strong dependence on radius, while it is almost independent of the z coordinate.

Impact parameters resolutions d₀ vs z₀

16.07.2014

Phase-I Tracking Performance

16.07.2014