Tracking and vertexing algorithms at high pileup

Vertex 2014 – Sept 18, 2014

G.Cerati (UCSD) on behalf of the CMS Collaboration

- CMS Tracker:
 - Pixel Detector: 66M channels, 100x150 µm² pixel
 - Si-Strip detector: 9.6M channels, 80-180 µm pitch, 10-20 cm long
 - **Double-sided modules** glued with 100 mrad angle provide 3D position (global coordinates)

- CMS Tracker:
 - Pixel Detector: 66M channels, $100x150 \ \mu m^2$ pixel
 - Si-Strip detector: 9.6M channels, 80-180 µm pitch, 10-20 cm long
 - **Double-sided modules** glued with 100 mrad angle provide 3D position (global coordinates)
 - Occupancy 10-100x lower in pixel region due to high granularity
 - inside out tracking from pixel layers
 - complemented with seeding from double sided strip layers

- Tracking based on Kalman Filter and divided in 4 main steps: ▶ seeding, pattern recognition, fitting and selection
- Procedure repeated iteratively, removing hits associated to high quality tracks ("High Purity") to reduce combinatorics
- Seven iterations used in Run I:

Ν	Step Name	Seeding	Target Track
0	Initial	pixel triplets	prompt, high p _T
	LowPtTriplet	pixel triplets	prompt, low pt
2	PixelPair	pixel pairs	high p _T recovery
3	DetachTriplet	pixel triplets	displaced
4	MixedTriplet	pixel+strip triplets	displaced-
5	PixelLess	inner strip pairs	displaced+
6	TobTec	outer strip pairs	displaced++

Vertex reconstruction:

- Track clustering with Deterministic Annealing
- Resolving power $\Delta z \sim 1 \text{ mm}$
- Adaptive Vertex fit
- Resolution O(10 μ m) both in x-y and z
- Reconstructed vertices sorted according to higher ΣpT^2

CMS Preliminary Simulation

- Pile-up scenarios for Run2:
 - Startup at 50ns bunch crossing (bx), collect up to ~1/fb, PU~25
 - Ramp up at 25ns bx, collect up to ~9/fb with PU~25
 - ▶ Stable running at **25ns** bx, up to ~9/fb with **PU~40**
- Iterative tracking is not the definitive solution, tracker is far from being empty after all iterations
- **Pixels** are affected by **dynamic inefficiency**, mainly due to saturation of chip readout buffer.

- With 25 ns bunch crossing, out of time pile-up increases the occupancy of the strip detector by ~45%
 - only ~5% for pixels
- Even worse, on double-sided strip layers the number of ghost hits increases and in TIB1 becomes larger than true hits at <PU>=40
 - ghost hits are due to ambiguities when more than one track crosses a glued detector
- As a consequence, the effect of pile-up is dramatic on iterations seeded by pairs of strip matched hits (PixelLess and TobTec)
 - still problematic for steps seeded by PixelPairs and MixedTriplets
 - pixel triplet seeded steps are linear (Initial) or close to linear (LowPtTriplet, DetachedTriplet) with respect to pile-up

Tracking Developments for Run2

Triplet-based Seeding from Strips

- Seeding is key for robust tracking against PU: new algorithm for strip-seeded steps
- Main feature is the χ^2 cut from straight line fit of 3 points in the RZ plane
- From each pair at most one triplet can be produced:
 - if only one matching 3rd hit is found, the triplet is used as seed
 - if more than one matching 3rd hit is found on the same compatible layer, the pair is used as seed
 - if more than one matching 3rd hit is found in different layers, the triplet with best chi2 is used
 - if no third hit can be found, the pair is discarded
- Tighten beam spot constraints as much as possible with no efficiency loss
- Effective in rejecting half of the seeds, reconstructing the same number of tracks

- With 25 ns bx, the increase in occupancy for the strip detector induce an increase by 2x both on timing and fake rate
- Clusters from out of time pile-up are characterized by low collected charge
 - Ioopers arrive at random time with respect to bx (or tail effects on charge collection)
- Cutting on the cluster charge suppresses the effect
 - can be applied upfront track reconstruction, during seeding or during pattern recognition
 - accounts for sensor thickness and trajectory crossing angle
 - p_T dependent cut to preserve potential signal from fractional charge particles
- Stable performance ensured by gain calibration in Prompt Calibration Loop
 - data vs MC and data vs time within 5% during Run1

- Both new seeding and cluster charge cut **reduce timing** of PixelLess and TobTec iterations by a **factor 2x**
- Benchmark timing and physics performance across releases and for different pile-up
 - TTbar samples with realistic alignment and calibration conditions
- PU scenarios:
 - ▶ BX=25 ns, <PU>=25, 40, 70, 140
 - ▶ BX=50 ns, <PU>=25
- Iterative tracking **time reduction** (for BX=25 ns):
 - ▶ 2x at PU=25, 3x at PU=40, 4x at PU=70

• Further time gain from tracking optimizations:

- Global optimization of iterative tracking:
 - Reorder of iterations: moved iter3 right after iter0 faster first!
 - Remove redundancy: reduce layer combinations for seeding, harmonize selection criteria
 - Stable performance, about 10% overall gain
- Speedup from code optimizations
- Pixel dynamic inefficiency recently included in simulation
 - At PU40, efficiency reduction is at (a few) percent level
 - Almost no difference in fake rate
 - Iterative tracking is **robust** against detector inefficiencies:
 - less tracks are reconstructed with steps seeded by pixel-triplets
 - partially recovered by other iterations
- Use a **multivariate** approach for **track selection**
 - Variables: Number of layers, lost hits, $\chi 2$, η , relative p_T error, number of hits, ...
 - Higher efficiency for low p_{T} and displaced tracks
 - Reduce fake rate in transition and forward region
 - First version already in production, can be further improved before data taking

Merged clusters in b-jets

- Tracking timing solved, focus on improving physics performance with tracking iterations dedicated to specific objects
- Tracking in high p_T jets is crucial to keep high b- and τ-tagging efficiency
- Dense environment:
 - small two-track separation
 - merged clusters
 - only one hit with badly estimated position and uncertainty
- A new dedicated iteration has been developed
 - ▶ regional, along high p_T calo jets
 - threshold needs to be a trade-off between timing and physics
 - Iooser tracking cuts to follow combinatorial expansion
 - cluster splitting (using the jet direction as guidance)
 - improved efficiency at small dR
- We plan to include also new features:
 - deterministic annealing filter, fits tracks re-weighting close-by hits

Muon Recovery Iterations

- In 2012 data it was noticed a loss of muon reconstruction efficiency in the tracker, increasing with pile-up.
- In order to recover it, **2** additional iterations have been designed:
 - Outside-in: seeded from the muon system, recover the missing muon-track in the tracker
 - Inside-Out: re-reconstruct muon-tagged tracks with looser requirements to improve the hit-collection efficiency
- Full efficiency recovered with the new iterations

Tracking at HLT

- Tracking widely used at HLT, crucial for keeping low rates and high efficiency wrt offline
- Timing is even more problematic at HLT: already in Run1, CMS developed a **dedicated, faster** tracking **configuration** for HLT
 - regional reconstruction around region of interest, simplified algorithms
 - Run2 has higher energy, higher luminosity, higher PU: tracking needs large speed up
 - PV constraints, higher p_T cuts, bring improvements from offline, prioritize reconstruction
 - first reconstruct tracks with higher impact on physics (especially jets and MET)
 - drop iterations that are less important
- Achieved **4x time reduction** at PU~40 with same performance

Performance vs PU

Performance Comparison with Run1-like PU

- TTbar events with <PU>=25, BX=50ns
- Same or higher efficiency for prompt tracks
- Up to **2x** reduction in fake rate
- Slight efficiency loss for displaced tracks

Performance Comparison with Run2-like PU

- TTbar events with <PU>=40, BX=25ns
- Same or higher efficiency for prompt tracks
- Up to **6x** reduction in fake rate
- Slight efficiency loss for displaced tracks

Run1 vs Run2 with Nominal PU Conditions

- For physics analyses, the relevant comparison is with nominal PU conditions
 - ▶ Run1–like PU (<PU>=25, BX=50ns) for Run1 release
 - Run2–like PU (<PU>=40, BX=25ns) for Run2 release
- With much worse conditions, in Run2 we have same efficiency for prompt tracks, slightly higher fake rate, slightly lower efficiency for displaced tracks
- Run2 CMS physics performance to be the same despite large PU increase!
 - at least for reconstruction objects based on tracks

- Number of reconstructed vertices vs PU shows a linear trend with slope ~0.7 up to PU70. Excess of reconstructed vertices for PU140
- Number of matched vertices has linear trend over all range
 - A reconstructed vertex matches a simulated if $\Delta z < 1$ mm and $\Delta z < 3\sigma_z$

- Number of reconstructed vertices vs PU shows a linear trend with slope ~0.7 up to PU70. Excess of reconstructed vertices for PU140
- Number of matched vertices has linear trend over all range
 - A reconstructed vertex matches a simulated if $\Delta z < 1$ mm and $\Delta z < 3\sigma_z$
- These results are the effect of a faster than linear increase in fake rate and a linear decrease in efficiency

- Merged rate curve starting below 1 mm separation and ~PU independent
- On ttbar events, signal vertex ID based on highest Σp_T^2 has stable performance up to PU70
 - reconstruction and identification OK for Run2 PU conditions!

Final remarks

Tracking Challenges Beyond Run2

- New detectors:
 - Tracking with **upgrade geometries** is functional
 - Phase1@50PU and Phase2@140PU give comparable result
 - Phase2 geometry includes extension **up to** $|\eta| \sim 4$
 - Fast and reduced readout of Phase2 outer tracker: L1 track trigger under development
- New computing technologies:
 - **Many cores**: parallelization, large **vector units**: same-instruction-multiple-data
 - Large effort made CMS tracking thread safe in production release
 - Algorithms need to be developed/adapted to work efficiently on new hardware
 - Hough Transform, Cellular Automata, Kalman Filter
- Time for R&D is now!

- High PU is a challenge for tracking
- Timing is under control
- Run2 performance comparable or better than Run1
- Stable primary vertex reconstruction performance with Run2 conditions
- Work for Run2 is not over, further improvements on the way (offline and HLT)
- SLHC is coming, tracking is getting ready for it

Backup

- Tracking based on Kalman Filter
 - add hits following the track direction, measurement (and thus extrapolation) precision improved at each layer
- Seeding
 - proto-tracks made of hit pairs or triplets with direction compatible with beam spot or vertices
- Pattern recognition
 - starting from the seed, search for compatible hits along the track; N+1 combinations considered:
 - best N based on χ^2 , +1 accounts for missing hit
- Fitting
 - estimation of track parameters; combining forward and backward fit yields best measurement at each point along the track
- Selection
 - assign quality flags based on N_{hits} , χ^2 and beam spot compatibility
 - tighter (looser) cuts for tracks with small (large) number of layers with hits
 - poor tracks discarded, best quality: "High Purity"

CMS

- Track Selection
 - Tight track quality selection: $\chi^2/ndof<20$, nLayers \geq 5, nPixelLayers \geq 2, $d0/\sigma_{d0}<5$
 - No p_T selection to reconstruct also soft pile-up vertices
- Vertex reconstruction based on Deterministic Annealing
 - T→∞: all tracks associated to a unique vertex (beam spot)
 - T>Tmin: vertex identification by dynamic splitting (soft track assignment)
 - T<Tmin: unique assignment of tracks to a vertex
 - Resulting resolving power ~1 mm
- Adaptive Vertex fit
 - Iterative re-weighted Kalman Filter
 - With and without beam-spot constraint
 - Asymptotic resolution: 10 μm in x (y) and 12 μm in z

Figure 15: Evolution of the track weights of a $c\bar{c}$ primary vertex fit.

Track Parameter Resolutions

Vertex Resolution

- For minimum-bias events, the resolutions in x and z are, respectively, less than 20 μm and 25 μm , for primary vertices with at least 50 tracks.
- Due to harder track momentum spectrum, the resolution is better for the jet-enriched sample across the full range of the number of tracks used to fit the vertex, approaching 10 μm in x and 12 μm in z for primary vertices using at least 50 tracks

Measurement of Tracker Material

- Different methods are used to estimate the tracker material:
- Hadron track momentum loss:
 - the momentum loss by hadron tracks in the tracker volume is proportional to the amount of material traversed.
 - The track momentum loss is estimated (on low pT tracks, 0.9<pT<1GeV) integrating it along the track trajectory.</p>
- Electron track (pin-pout)/pin:
 - the electron momentum pin(pout) is obtained from the forward(backward) track fit.
 - The fractional difference between the two depends on the amount of energy radiated by bremsstrahlung and it is used as an estimator of the material traversed by the track.
 - Electrons are selected from $Z \rightarrow e+e-$ decays.
- The deviation from unity of the ratio X0data/X0MC is interpreted in terms of material mismodeling and used as input to improve the tracker description in the simulation.