MTCA.4 at DESY.

Uroš Mavrič on behalf of the DESY MTCA.4 Development.
8th meeting of the xTCA interest group, CERN, 17.03.2014
Talk Overview.

- Hardware overview
- Organization of the FPGA functionalities
- Driver and software organization
- Management and interoperability
- Applications
COTS HW Components.

Typical MTCA.4 crate configuration used at DESY.

- **NAT, 600 W**
- **Telkoor, 1kW, 600 W**
- **Wiener, 1kW**
- **2U Schroff**
- **9U 12 slot ELMA**
 - LLRF AMC backplane
 - PCIe gen. 3 (8 Gbps)
 - PIP: <6 Gbps (to-be redesigned)
- **9U 12 slot Schroff**
 - LLRF AMC backplane
 - PCIe gen. 3 (8 Gbps)
 - PIP: 10 Gbps
- **NAT MCH-PHYS**
 - Host of the MCMC.
 - Host of the PCIe switch: PCIe x4 Gen 3 for each slot.
 - Centralized CLK distribution to all AMCs.
 - Transition to rear over Z3 (COM Express, management module for the RF backplane).
- **Concurrent AM 900/412**
 - 2-core 2.5 GHz Intel Core i7-3555LE processor
 - 16 Gbytes of DDR3-1600
 - X 8 PCIe Gen 3
 - 2 x SATA interfaces for onboard storage
 - 4 x Gigabit Ethernet interfaces
 - 2 x USB 3.0 ports via front panel
 - 3 serial port interfaces
 - Display Port graphics interface via front panel
 - Serial-over-LAN (SOL)
 - Possibility to switch to a quad-core
Specific DESY/XFEL HW Demands.

- Vector sum systems require centralized slots with AMC cards that act as concentrators.
 - Modification of the standard PICMG AMC backplane.
 - LLL on ports 8-15 on slot 3,4 to all other slots.
 - Data throughput: 6.25 Gbps by 6 on Point-to-Point.

- Multichannel systems and limited space require compact signal distribution.
 - uRF Backplane located in the rear side of the standard MTCA.4 crate.
 - For the MCH, the uRF backplane is an extension of the front backplane.
Typical AMC/RTM Pairs.

DRTM-DWC10 / SIS8300L

- 10 channel down-converter to IF (<80 MHz).
- RF input 0.7 - 4 GHz
- Variable attenuators
- Low residual phase and amplitude noise.
- 10 channels with 16 bit, 125 MSPS ADCs
- Virtex 6, 4 x 4 Gbit DDR3

DRTM-VM2 / DAMC-TCK7

- 2 I/Q modulators with RF switch driven by interlocks.
- Spartan 6, 16- bit DACs
- On-board CLK generation.
- Data concentrator based on Kintex 7, 23 (27) GTXs.
- LLL up to 12.5 Gbps.
- PCIe Gen. 3 (16Gb/s/4 lanes)

High-freq. ver. (up to 6 GHz)

Low-freq. ver. (0.1 – 1.5 GHz)
General Purpose AMC Boards.

DAMC-FMC25

- A general purpose FMC Carrier
- Two HPC connectors
- Virtex 5 XC5VFX70T-2FF1136, DSP, application specific tasks, etc.
- Spartan 6 XC6SLX45T-2CSG324I for on-board management

DAMC-FMC20

- A general purpose low-cost FMC Carrier
- One HPC connector and one LPC connector
- Spartan 6 XC6SLX45T (for PCIe conn.) and Spartan 6 XC6SLX150 (for appl. and Z3 conn.)

DAMC-DS800

- Fast digitizer with 8 input channels at 0.8 GSPS or 4 at 1.6 GSPS
- 4 x DACs
- On-board fan-out for CLKS
- Virtex 6
Specific RTM boards.

DRTM-PZT4
- 4 power amplifiers with 0-100V, -100V/+100V
- DAC outputs +/-5V, +/-10V, 0/5V, 0/10V
- Each power amplifier can drive up to 10uF capacitance.
- Remotely variable output analog filter
- Possibility for external power supply

DRTM-LOG1300
- Generation of the LO and CLK signals from single REF input.
- Distribution over uRF backplane.
- Splitting of 3 RF signals to 9 x 3 RF outputs.
- Fan-out of 22 LVPECL CLK signals.
- Each RF and/or CLK channel can be switched off individually
- Temperature control of the circuit via Peltier elements and TECs.

DRTM-DWC8VM1, DRTM-DS8VM1
- Field detection and RF drive output on single RTM.
- Low frequency (direct sampling 5 MHz – 450 MHz) and high frequency version (down conversion 0.7 – 6 GHz).
- I/Q modulator with monitoring and RF switch.
- On-board CLK generation via extr. REF or/and on-board VCXO.
More FMC/RTM Cards.

DFMC-MD22
- Dual channel stepper motor driver
- LPC connector
- Includes motion controller
- Monitoring of motor load
- Protection mechanisms included

DFMC-BAM
- Two ch. with interleaved sampling of 2 ADCs.
- On-board CLK distribution and phase shifting

DRTM-AD84
- 8 ADCs 10 MSPS, 4 DACs 1 MSPS
- ADC : DC-95 MHz input BW, switchable ADC input impedance
- DAC : DC-1 MHz output BW, 50 ohm output impedance
ps Timing System for XFEL and FLASH

Can be used as a **timing receiver** or **transmitter**

Optional **RTM**: 9 transmitters, Further triggers or clocks

MicroTCA backplane: TCLKA and TCLKB, 8 * M-LVDS

Transmitter Piggyback with link delay compensation

With link length compensation active (over 4 km distribution)

100 ps

FYSIKUM
FPGA Structure.
SW and Driver.
Platform Status Monitoring.

- jDDD based graphical interface for remote monitoring the HW status over IPMI (temperatures, voltages, currents, FRU information, HP status etc.)
- Individual board deactivation, remote crate/board restart, etc.
Platform Related Activities.

> Platform related issue and Interoperability were a major “showstopper” at the beginning:

 - Platform management related (FW and HW)
 - Debugging in collaboration with industry
 - Long debugging periods

> MTCA interoperability workshop

> 2,5 years of debugging in collaboration with industry

> Tracking of bugs:

 - RT (https://rt-system.desy.de/) - ~80 bugs reported and solved
 - Redmine (https://mskllrfredminesrv/projects/mtca4platform/issues?set_filter=1&tracker_id=1)
 - DESY Log-book (http://ttfinfo.desy.de/uTCAelog/index.jsp) – a list of bugs and procedures

> Regular bi-weekly meetings on Tuesdays (e.g. tomorrow 18.03.2014) starting at 9:15.

Everyone welcome to join!

 Skype : mtca.4_meeting
 Email : uros.mavric@desy.de
MMC1.0 unifies the MMC functionality (HW and FW) on all the presented boards.

It offers a tested, ready-to-use solution for the AMC and RTM management controllers and tackles demands of various complexities (advanced and basic versions).

A test/demo board is being tested and will be available (with FW).
Zone 3 Classes Recommendations in MTCA.4.

https://mtca.desy.de/resources/zone_3_recommendation/index_eng.html

> Class A1.x mainly for analog signal transmission over Zone 3
> Class D1.x for digital signal transmission over Zone 3

> Recommendation – no standardization to be open for future signal types

> Requires
 - AMC FPGA module based,
 - 2 ADF 30 pair (Mid-size) connectors
 - Class A1.x and D1.x needs not to be compatible

> Supports
 - LVDS, LVCMOS, OC, CML, analog differential
 - Digital signals (single-, diff.-ended, bi-directional)
 - Analog signals
 - High-speed links
 - non-FPGA low-jitter clock signals
 - non-FPGA signals with fixed direction
 - ps-stable timing signals
MTCA.4 in Practice at DESY.

> LLRF systems at FLASH, AMTF, CMTB, REGAE,…

> Special Diagnostics

Electro-optical detector

Laser Synchronization
Thank you for your attention!