xTCA Interest Group meeting, CERN, 17.03.14

# FC7 AMC FMC carrier for CMS

Mark Pesaresi (Imperial College), Paschalis Vichoudis (CERN)

Magnus Hansen, Francois Vasey (CERN) Greg Iles, Sarah Greenwood, Andrew Rose, Geoff Hall (Imperial College)

with acknowledgements & thanks to: John Jones, Jan Troska

#### FC7 (FMC Carrier – Xilinx Series 7)

- flexible, uTCA compatible card for generic CMS data acquisition/control uses
- suitable for production systems or prototyping/benchtop use
- collaborative effort between CERN & UK
- evolution of existing board designs (CERN GLIB & Imperial MP7)



#### overview of requirements/specifications

- uTCA AMC implemented as a generic dual FMC carrier
- Xilinx series 7 FPGA to support line rates up to **10Gbps**
- **simple solution**, minimise risk and reduce development time to maturity by basing design on existing hardware



MP7 experience with 10Gbps & advanced services



**CERN GLIB** 



GLIB FMC layout/schematic expertise

#### TCDS (trigger, control & timing distribution) upgrade

- the FC7 will satisfy the role of both Local Partition Manager and Partition Interface boards using different FMC mezzanines
- system (70 boards) to be assembled over next 6-12 months

#### Phase I Pixel FED/FEC prototype

- development to begin in 2014
- could possibly satisfy role as final production board

## development history



## FC7: top view



#### 16 layers Nelco N4000 13-EPSI

- low loss tangent
- low dielectric constant
- misaligned with PCB weave

## good performance at ~10GHz (MP7)

## FC7: top view







FC7 is FMC spec compliant but can also accommodate non-standard mezzanines & stacking heights

## FC7: oscillators



## FC7: configuration



## FC7: bottom view







## FC7: clocking tree



## FC7: backplane links



## FC7: board services



## batch #1: reception testing

#### FMC and backplane connectivity

- tests on all general IO lines to/from
   FPGA (single ended)
- loopback FMCs (AF-101) & loopback AMC test board (SMA Ultra-9000)
- marching '1's test at 40MHz demonstrate **full connectivity**







## batch #1: reception testing

#### FMC and backplane connectivity

- tests on all high speed differential lines to/from FPGA
- IBERT bit test firmware to test serial (GTX) transceivers to backplane (5Gbps) and FMCs (10Gbps) in loopback







#### FMC and backplane connectivity

- tests on all high speed differential lines to/from FPGA
- IBERT bit test firmware to test serial (GTX) transceivers to backplane (5Gbps) and FMCs (10Gbps) in loopback



full connectivity demonstrated

all transceivers working at specified line rates

**0** bit errors in >10<sup>15</sup> transmitted bits (BER<10-<sup>14</sup>) using a PRBS-31 data pattern

## batch #1: reception testing

#### other connectivity

**DDR3 RAM** -> early testing indicates good operation (no R/W errors) at 480MHz using a pre-built Xilinx traffic generator

**clocking logic** -> no issues detected with clocking scheme, oscillators or programmable clock generator so far, difficult to cover full phase space!

-> more tests needed

**crate operation** -> MMC functionality (board power management, IMPI communication) verified, communication over GbE on Port 0 (IPBus) works

-> sensor data reporting functionality to be added



## batch #1: performance testing

#### **FMC SERDES**

electrical transmission at 10Gbps on FMC MGTs using XM104 (access to two channels)



electrical eyes are wide open for both FMC slots

jitter measured to be ~20ps

channel to channel jitter spread ~1.7ps

easily meets SFF-8431 specifications for SFP+ modules at 10Gb/s of 27.2ps



## batch #1: performance testing

#### **FMC SERDES**

optical transmission at 10Gbps on FMC MGTs using Faster Technology FM-S18 and SFP+ in loopback with variable attenuator

running IBERT test in loopback

initial testing (850nm MM) indicates that the carrier does not degrade performance of optical transceiver (<-11.1dBm)

need more work to define a systematic test stand (well characterised reference FMCs, SFP+s and carriers)





## batch #1: performance testing

#### backplane SERDES

electrical transmission at 5Gbps on AMC MGTs using SMA Ultra-9000 and in the crate with the AMC13XG

excellent eyes at 5Gbps (~46ps jitter)

test of Port 1 (CMS DAQ link) between **FC7 and AMC13XG** using IBERT bit tests using PRBS-31 – **no errors in >10**<sup>13</sup> **bits** 

RX bathtub curves on both AMC13 and FC7 on Port 1 **0.45UI open** 











## firmware/software

# mature version of f/w for basic board control available

- very similar in structure & content to GLIB f/w
- -separate user (custom) and system (IPbus & register space, clock & peripherals control) spaces
- available on SVN, much more to come (DDR3, clock control, firmware loading...)

#### software for basic board control available

#### https://svnweb.cern.ch/cern/wsvn/ph-ese/be/fc7



## First FC7 application: TCDS

#### **Local Partition Manager (LPM)**

- 2x 10Gb/s <-> DAQ
- 8x TTC/TTS <-> TCDS fanout (PI)
- Backplane <-> AMC13



## **Partition Interface (PI)**

- 2x TTC/TTS <-> LPM
- 10x TTC/TTS <-> FEDs
- RJ45 TTS <-> Legacy systems



### summary

CMS (CERN/IC) board, merge between MP7 & GLIB

**Dual LPC FMC carrier** 

- w/ additional SERDES as in HPC

**Successful preproduction** 

**Mature FPGA firmware** 

First application (TCDS) already launched production

More to come!

