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WARNING

BOSE-EINSTEIN CORRELATION BETWEEN MOMENTA
OF TWO IDENTICAL HADRONS

C (p1, p2) ≡ N(p1, p2)

N(p1)N(p2)
− 1 (1)

IS USUALLY ANALYZED USING THE FORMULA

C (p1, p2) =
w̃(P12;Q)w̃(P12;−Q)

w(p1)w(p2)
=
|w̃(P12,Q)|2

w(p1)w(p2)
(2)

WHERE w(p.x) IS THE SINGLE-PARTICLE
DISTRIBUTION (WIGNER FUNCTION) AND

w̃(P12;Q) =
∫
dx e iQxw(P12; x); w(p) =

∫
dx w(p; x)

P12 = (p1 + p2)/2; Q = p1 − p2,

THIS PROCEDURE ASSUMES THAT HADRONS ARE
UNCORRELATED.



DATA L3

Figure: L3 data for two-jet and three-jet events.



DATA CMS 1

Figure: Two-pion correlation function from CMS (pp at 7 TeV)



GENERAL TWO PARTICLE CORRELATIONS

LET W (p1, p2; x1, x2) BE THE MOMENTUM AND SPACE
”DISTRIBUTION” OF TWO PARTICLES (”SOURCE
FUNCTION”). IF PARTICLES ARE IDENTICAL, THE
OBSERVED MOMENTUM DISTRIBUTION IS

Ω(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) +

+

∫
dx1dx2e

i(x1−x2)QW (P12,P12; x1, x2) ≡

≡ Ω0(p1, p2) [1 + C (p1, p2)] (3)

WHERE P12 = (p1 + p2)/2, Q = p1 − p2, AND

Ω0(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) (4)

ONE SEES THAT C (p1, p2) CONTAINS INFORMATION
ONLY ON THE DISTRIBUTION OF x1 − x2.



NO INTER-PARTICLE CORRELATIONS

IF THERE ARE NO CORRELATIONS BETWEEN
PARTICLES,

W (p1, p2; x1, x2) = w(p1, x1)w(p2, x2)

THEN Ω(p1, p2) = w(p1)w(p2) + |w̃(P12,Q)|2,

WHERE w̃(P12,Q) =
∫
dx w(P12, x)e ixQ .

THUS THE CORRELATION FUNCTION IS

C2(p1, p2) =
|w̃(P12,Q)|2

w(p1)w(p2)
≥ 0!!!! (5)

THIS IS THE COMMONLY USED FORMULA.

FROM w̃(P12,Q) ONE CAN RECOVER w(P12, x).

BUT: THIS IS VALID ONLY IF THERE ARE NO
INTER-PARTICLE CORRELATIONS.



CORRELATIONS IN SPACE

IDEA: WHEN PIONS ARE TOO CLOSE TO EACH OTHER
THEY ARE NOT PIONS ANYMORE!!!
( BECAUSE THEIR CONSTITUENTS ARE MIXING AND
THEIR WAVE FUNCTIONS ARE NOT
WELL-DETERMINED).

SINCE HBT EXPERIMENTS MEASURE QUANTUM
INTERFERENCE BETWEEN THE WAVE FUNCTIONS OF
PIONS, THEY CANNOT SEE PIONS WHICH ARE TOO
CLOSE TO EACH OTHER.

THEREFORE W (P12,P12; x1, x2) MUST VANISH AT SMALL
|x1 − x2|, IMPLYING CORRELATION BETWEEN POSITIONS
OF TWO PIONS.



PICTURE



CORRELATIONS IN SPACE (2)

Repeat: W (P12,P12; x1, x2) MUST VANISH AT |x1 − x2| ≈ 0,
MEANING CORRELATION BETWEEN POSITIONS OF
TWO PIONS. THIS IS THE NECESSARY CONSEQUENCE
OF THE FUNDAMENTAL PROPERTY OF HADRONS:
THEY ARE NOT POINT-LIKE.

THUS THE TWO-PION DISTRIBUTION IS OF THE
FORM

W (P12,P12; x1, x2) = w(P12; x1)w(P12; x2)[1−∆(x1 − x2)]. (6)

THE CORRELATION FUNCTION:

C (P12,Q) =
|w̃(P12,Q)|2

w(p1)w(p2)
− Ccorr (p1, p2);

Ccorr =

∫
dx1dx2e

i(x1−x2)Qw(P12; x1)w(P12; x2)∆(x1 − x2)

w(p1)w(p2)
(7)



EXAMPLE

FOR ILLUSTRATION, TAKE

∆(x1 − x2) = Θ[r2cut − |~x1 − ~x2|2 − (t1 − t2)2];

w(P, x) = e−|~x |
2/R2

e−t
2/τ2f (P)
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Figure: Oscillating two-pion correlation function. R = rcut = τ = 1 fm.



DATA CMS 2

Figure: Two-pion correlation function for various multiplicities from CMS
(pp at 7 TeV)



COMMENTS

(i) The presented qualitative argument shows that the
observed negative values of the HBT correlation function are
not accidental but reflect the fundamental fact that hadrons
are not point-like. Therefore this region of Q2 deserves more
attention in data analysis. It seems that the effect simply
MUST BE THERE and the real experimental challenge is to
determine its position and its size.

(ii) More serious calculations, as well as a detailed
comparison with data are clearly needed and are in progress
(together with W.Florkowski).



Derivation of the symmetrized formula:
Density matrix in momentum space: ρ(p1, p2; p′1, p

′
2) =∫

dx1dx2e
i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p′1x ′1+p′2x

′
2)ρ(x1, x2; x ′1, x

′
2).

The particle distribution is Ω(p1, p2) = ρ(p1, p2; p1, p2).
The Wigner function:
W (p1, p2; x+1 , x

+
2 ) =

∫
dx−1 dx−2 e i(p1x

−
1 +p2x

−
2 )ρ(x1, x2; x ′1, x

′
2)

x+ = (x + x ′)/2; x− = x − x ′

Symmetrization:
ρ(p1, p2; p′1, p

′
2)→ ρ(p1, p2; p′1, p

′
2) + ρ(p1p2; p′2, p

′
1)

p1x1 + p2x2 − p1x
′
1 − p2x

′
2 = p1x

−
1 − p2x

−
2

p1x1 + p2x2 − p2x
′
1 − p1x

′
2 = P12x

−
1 + P12x

−
2 + Q(x+1 − x+2 ) (8)

Ω(p1, p2) =

∫
dx+1 dx+2 W (p1, p2; x+1 , x

+
2 ) +

+

∫
dx+1 dx+2 e iQ(x+1 −x

+
2 )W (P12,P12; x+1 , x

+
2 ) (9)


