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Instead of outline

Two phenomena are related:

« clustering in light nuclei

!

harmonic flow in ultra-relativistic nuclear collisions

Surprising link:

lowest-energy ground-state structure «— highest energy reactions

@ New method of investigating many-particle nuclear correlations

@ Another test of collective dynamics/harmonic flow
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o clusters
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David Brink: After Gamow's theory of a-decay it was natural to investigate
a model in which nuclei are composed of a-particles. Gamow developed a
rather detailed theory of properties in his book "Constitution of Nuclei
published in 1931 before the discovery of the neutron in 1932. He supposed
that 4n-nuclei like 8Be, 2C, 160 ... were composed of a-particles
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Shell model (and its problems)

Eugene Wigner, Maria Goeppert-Mayer, Hans Jensen, Nobel in 1963

Michael P. Carpenter: However, in the 1960s, excited states in nuclei that
comprise equal numbers of protons and neutrons, (e.g., '2C and 1°0) were
identified that could not be described by the shell model, and it was
suggested by lkeda and others that these states could be associated with
configurations composed of a particles

[Recent status: SOTANCP3 Conference, Yokohama, May 2014]
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« clusters in light nuclei
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other excited, 27 ...

How can we detect the « clusters in the ground state?
What is their spatial arrangement?
Assessment of n-body correlations (one-body not enough)
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Flow
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Ultra-relativistic A+A collisions (LHC, RHIC, SPS)

@ Lorentz contraction

o Collision: essentially
instantaneous passage, frozen
configuration

@ Reduction of the ground-state
wave function of the nucleus
(like measurement)

@ detection of particles in the
transverse direction
(mid-rapidity)

ALICE
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Phenomenon of flow

Quark-gluon plasma is formed!

“Initial shape — final flow" transmutation detectable in the asymmetry of
the momentum distribution of detected particles — follows from collectivity
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Merge the two ideas (a's and flow) —
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From « clusters to flow in relativistic collisions

« clusters — asymmetry of shape — asymmetry of initial fireball —
— hydro or transport — collective harmonic flow

nuclear triangular geometry — fireball triangular geometry — triangular flow

What are the signatures, chances of detection?
(some blurring by fluctuations)
“Easy snap-shot but difficult development”

Related idea: triton/3He—Au at RHIC [Sickles et al. (PHENIX) 2013]

The case of 12C is more promising, as it leads to more abundant fireballs
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Our modeling 12C

Three «'s in a triangular arrangement, generate nucleon positions with

Monte Carlo, parameters (size of the cluster, distance between clusters)
properly adjusted — two “extreme” cases
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Distribution of centers of protons in 12C

(a) dashed: data from ff (after unfolding the proton ff) = BEC, solid - our BEC,
dotted - Jastrow (Buendia et al.)

(b) points - variational MC (Wiringa et al.), line - our VMC
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12C2%pPh — single event

Why ultra-relativistic?

Reaction time is much shorter than time scales of the structure
— a frozen “snapshot” of the nuclear configuration

y [fm]

wounding range determined by aﬁlf\}l

*

(Ny > 70 - flat-on orientation)
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Imprints of the three « clusters clearly visible ]

Simulations with GLISSANDO 2
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more events
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more events
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more events
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more events
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more events
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... more events
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more events
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more events
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12C

Our intrinsic distributions in 2C: three a's in a triangular arrangement |
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12C_208ph collision

Intrinsic distributions in the transverse plane of the fireball (here with
Ny, > 70 — large multiplicity enforcing the flat-on collision)
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Some triangularity in the unclustered case follows from the fluctuations
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Geometry of nucleus — geometry of fireball

Triangular nucleus causes triangular "damage”! J
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intrinsic density of 12C — geometry of the fireball
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Eccentricity parameters

We need some quantitative measures of deformation (heavily used in
heavy-ion analyses)

Eccentricity parameters ¢, (Fourier analysis)
n ing;
¢ oin®n _ 2 pye™?
iti

describe the shape of each event (j labels the sources in the event,
n=rank, ®,, is the principal axis angle)

n = 2 — ellipticity, n = 3 — triangularity, . ..

Two components:

e intrinsic (from existent mean deformation of the fireball)

o from fluctuations
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Geometry vs multiplicity correlations in 12C-Pb

Two cases of angular orientation

cluster plane parallel or perpendicular to the transverse plane:

4
@

higher multiplicity lower multiplicity
higher triangularity lower triangularity
lower ellipticity higher ellipticity
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Ellipticity and triangularity vs multiplicity

[WB & ERA, PRL 112 (2014) 112501]
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similar behavior forn =2 and n = 3
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Shape-flow transmutation

The eccentricity parameters are transformed (in all models based on

collective dynamics) into asymmetry of the transverse-momentum flow.
Linear response:

U, grows with e, J
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Cumulant moments

en{2}? = (1), en{4}! = 2(e7) — (e)

vn{m} ~ e {m}, n=2,3, m=24,6,...
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Cumulant moments
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Cumulant moments

L
L 4
mixed+gamma model
0.5¢ — <> (BEC)
C ——<[Z> (BEC)
0.45 —— <[B> (uniform)
F — — <[&> (uniform)
0.4
0.35RK
0.3
0.25
- Ny
0. [ 1 1 [ 1 L Ly 0|
0 30 40 50 60 70 80

WB (IFJ PAN & UJK) a clustering and flow WPCF 14 31 /41



Cumulant moments
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Ratios of cumulant moments
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Ratios of cumulant moments
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Dependence on the collision energy
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Qualitative conclusions hold from SPS to the LHC
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Other systems
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Other systems

(distributions matched to Wiringa's et al. radial densities

0.7 7Be-Pb, SPS 07 9Be-Pb, SPS C-Au, RHIC
065 0.65 —_—— <>

0.6] 0.6] <G>
055 055 == <O

05 05
0.45 0.45

0.4 0.4

0.35
0.3
0.25F

0.35
0.3]
0.25

Sy -
SO
Vy

o

NW

P [T TR Y SR SRL SN IV TP
0"10 15 20 25 30 35 40 45 50 55

L L L
0261556

T I N
25 30 35 40 45 50 55

.4

0.4

O-Pb, tet., SPS O-Pb, sq., SPS
038F | ————- <0 0.38
0.36F <g> 0.36
o34 LT == <G> 0.34
0.32F 0.32
0.28F N R N 0.28
026F SO 0.26
<
0.24f ‘\\\ 0.24f
062»2,7 | | | | \‘N\’W\\\\"\ 062'2,7 | | | | | '\\IW | |
25 50 55 60 65 70 75 80 85 45 50 55 60 65 70 75 80 85

WB (IFJ PAN & UJK)

« clustering and flow

I I | | I | I |
0'245 50 55 60 65 70 75 80 85

[work with Maciej Rybczynski]
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Conclusions
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Nuclear structure from ultra-relativistic heavy ion collisions

Snapshots of the ground-state wave function
Spatial correlations in the ground state — harmonic flow
Signatures in clustered 2C-29%Pb collisions

@ Increase of triangularity with multiplicity for the highest multiplicity
events

Corresponding decrease of the scaled variance of triangularity
Anticorrelation of ellipticity and triangularity

Clear signals from cumulant moments for ¢ < 10%

Stronger effect at lower oiiS! (i.e., at lower collision energies)

Even stronger effect on the 12C side in rapidity

Effect depends on the nuclear wave function

Possible data (NA61@SPS, RHIC) in conjunction with a detailed knowledge
of the evolution of the fireball would allow to place constrains on the
a-cluster structure of the colliding nuclei. Conversely, the knowledge of the
clustered nuclear distributions helps to verify the fireball evolution models
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Back-up
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Intrinsic distributions

Ground state of 2C is a 0T state (rotationally symmetric wave function).
The meaning of deformation concerns multiparticle correlations between
the nucleons

Superposition over orientations: J

1
|\Ifo+(331,...,.%'N)> /dQ\I/intr(xl,...,:UN;Q)

:47r

The intrinsic density of sources of rank n is defined as the average over
events, where the distributions in each event have aligned principal axes:
fintr(7) = (f(R(—®,)Z)). Brackets indicate averaging over events and
R(—®,,) is the inverse rotation by the principal-axis angle in each event
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