

Elliptic flow of identified hadrons in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Results based on: arXiv:1405.4632 [nucl-ex]

Panos Christakoglou (Nikhef)

for the ALICE Collaboration

The "perfect liquid" at RHIC and LHC

QGP?

€ ₿

0.5

1.0

• ALICE

☆ STAR

✤ PHOBOS

□ PHENIX

NA49

+ E877

¥ EOS

▲ E895

FOPI

 10^{3}

 $\sqrt{s_{NN}}$ (GeV)

O CERES

 10^{4}

- Mass ordering observed at low p_T at RHIC energies
 - expected by hydrodynamic calculations
- New calculations expect the mass ordering to be violated

- Number of constituent quark (NCQ) scaling holding with good accuracy at RHIC
 - quarks coalesce forming hadrons?
 - NCQ scaling was considered as "evidence" of partonic degrees of freedom

J. Adams *et al.*, (STAR Collaboration) Nucl.Phys. **A757** (2005) 102 K. Adcox *et al.*, (PHENIX Collaboration), Nucl. Phys. **A757**, (2005) 184

- Analysis of the 2010 Pb-Pb sample (~15M events analysed)
- Elliptic flow with the Scalar Product (SP) method with $|\Delta \eta| > 0.9$ (reduction of nonflow contribution)

Identifying particles

- Combination of TPC and TOF information
 - number of standard deviations in a p_T dependent way
- Purity > 95% for all p_{T} bins

Measuring v_2 for decays

$$v_{2}^{\text{Tot}}(m_{\text{inv}}, p_{\text{T}}) = v_{2}^{\text{Sgn}}(m_{\text{inv}}, p_{\text{T}}) \frac{N^{\text{Sgn}}(m_{\text{inv}}, p_{\text{T}})}{N^{\text{Tot}}(m_{\text{inv}}, p_{\text{T}})} + v_{2}^{\text{Bg}}(m_{\text{inv}}, p_{\text{T}}) \frac{N^{\text{Bg}}(m_{\text{inv}}, p_{\text{T}})}{N^{\text{Tot}}(m_{\text{inv}}, p_{\text{T}})}$$

p_T differential v₂ grouped by particle species

p_T differential v₂ grouped by centrality

p_T differential v₂ grouped by centrality

ALI-PUB-82653

*p*_T differential v₂ grouped by centrality

ALI-PUB-82653

Low p_T ($p_T < 3$ GeV/c): mass ordering \rightarrow elliptic/radial flow interplay

*p*_T differential v₂ grouped by centrality

ALI-PUB-82653

Intermediate p_T (3 < p_T < 6 GeV/c): ~grouping based on type (mesons/baryons)

- Important test of:
 - **★** mass ordering at low p_{T}
 - **★** the particle type grouping at intermediate p_{T}

- Important test of:
 - ***** mass ordering at low p_{T}
 - the particle type grouping at intermediate p_{T}

Mass effect also at the

intermediate p_T range!

- Important test of:
 - ★ mass ordering at low p_T
 - the particle type grouping at intermediate pr picture

Comparison with hydrodynamic calculations

hydro curves from: H. Song, S. Bass and U. Heinz arXiv:1311.0157 [nucl-th]

Panos.Christakoglou@nikhef.nl

Comparison with VISHNU

Looking at the details...: π , p, Λ

- Pion v₂ systematically underestimated for central events (for peripheral events the agreement is improved)
- Proton v₂ underestimated (i.e. extra push expected in hydro) for both centralities
- \sim Λv_2 overestimated (i.e. less push expected in hydro) for central events

Looking at the details...: K, ϕ , Ξ

 ϕ v₂ overestimated for both centralities: not enough hadronic interactions?

Mass ordering not preserved!!!

VISHNU

- Couples VISH2+1 to UrQMD
- MC-KLN density profiles
- η/s = 0.16
- ³ τ₀ = 0.9 fm/*c*

H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. 106 (2011) 192301 [Erratum-ibid. 109 (2012) 139904] [arXiv: 1011.2783 [nucl-th]].

H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. C 83 (2011) 054910 [Erratum-ibid. C 86 (2012) 059903] [arXiv: 1101.4638 [nucl-th]].

H. Song, S. Bass and U. W. Heinz, arXiv: 1311.0157 [nucl-th].

VISH2+1

- 2+1 hydro without hadronic cascade
- Glauber density profiles
- η/s = 0.08
- ³ τ₀ = 0.6 fm/*c*

H. Song and U. W. Heinz, Phys. Lett. B 658 (2008) 279 [arXiv:0709.0742 [nucl-th]].

H. Song and U. W. Heinz, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715 [nucl-th]].

H. Song and U. W. Heinz, Phys. Rev. C 78 (2008) 024902 [arXiv:0805.1756 [nucl-th]].

Not a clear trend: π , K similar for both centralities, φ similar for central events but different for peripheral, some baryons (e.g. p, Λ) "pushed" to higher p_T , while others (e.g. Ξ) to lower p_T

Mass ordering preserved

Number of constituent quark (NCQ) scaling

Number of constituent quark (NCQ) scaling in p_T/n_q

Number of constituent quark (NCQ) scaling in p_T/n_q

Relevant range: $p_T/n_q > I \text{ GeV/c}$

Number of constituent quark (NCQ) scaling in p_T/n_q

Scaling only approximate

NCQ scaling in *p*_T/*n*_q (double ratio)

NCQ scaling in p_T/n_q (double ratio)

Scaling at the level of no better than $\pm 20\%$

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

A. Adare et al., [PHENIX Collaboration], Phys. Rev. C85, (2012) 064914, [arXiv:1203.2644 [nucl-ex]].

NCQ scaling in $(m_T - m_0)/n_q$

NCQ scaling in $(m_T - m_0)/n_q$

Introduced to extend the scaling to lower p_T

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio)

NCQ scaling in $(m_T - m_0)/n_q$ (double ratio)

For $(m_T - m_0)/n_q < 0.6 - 0.8 \text{ GeV}/c^2$: scaling is broken at the LHC

For $(m_T - m_0)/n_q > 0.6 - 0.8 \text{ GeV}/c^2$: scaling is only approximate at the level of $\pm 20\%$

Qualitative similar deviations between LHC and RHIC, but the trend is different for different particle species

Instead of a summary...

Instead of a summary...

ALI-PUB-82653

Instead of a summary...

ALI-PUB-82653

Backup

Reconstructing decays

Comparison with hydrodynamic calculations

H. Song et al., arXiv:1311.0157 [nucl-th]

VISH2+1: comparison to spectra

Discussion II

v₂ comparison to RHIC

- At low p_T (ALICE vs STAR)
 - ★ Hard to quantify the difference due to different non-flow treatment (STAR \Rightarrow v₂{2})
- At intermediate p_T (ALICE vs PHENIX)
 - \star All particles at the LHC are higher than the RHIC points