Femtoscopy in event by event hydrodynamics

Piotr Bożek

AGH University of Science and Technology and Institute of Nuclear Physics PAN, Kraków

HBT of fluctuating fireballs

can the lumpy surface be observed?

NO (WPCF 2012, Frankfurt)

< ∃⇒

₫ ▶

æ

HBT of fluctuating fireballs

can the lumpy surface be observed?

NO (WPCF 2012, Frankfurt)

ъ

₫ ▶

correlations in event by event hydrodynamics

combine several (many) events (A. Kisiel)

$$C(q_{a}, k_{b}) = \frac{1}{N_{pairs,num}} \sum_{j=1}^{N_{h}} \sum_{m,l=1}^{N_{e}} \sum_{s=1}^{M_{l}} \sum_{f=1}^{M_{m}} \delta_{q_{a}} \delta_{k_{b}} \Psi(q, x_{1} - x_{2}) \frac{1}{N_{pairs,den}} \sum_{i \neq j=1}^{N_{h}} \sum_{l,m=1}^{N_{e}} \sum_{s=1}^{M_{l}} \sum_{f=1}^{M_{m}} \delta_{q_{a}} \delta_{k_{b}}$$

numerator - sum over different hydro events denominator - sum over different hydro event pairs increases the effective number of pairs (d-Au $5000 \times$)

- azimuthally sensitive HBT possible with reasonable cost
- perfect event plane resolution

3+1D hydrodynamics

- eccentricity and elliptic flow give azimuthal angle dependence
- good agreement with data and with smooth hydro (Kisiel et al. 2009)
- expected centrality dependence

HBT of fluctuating fireballs II

event by event emission function

$$C(q,k) = \frac{\int d^4x_1 d^4x_2 \langle S(x_1,p_1)S(x_2,p_2) \rangle |\Psi(k,(x_1-x_2))|^2}{\int d^4x_1 \langle S(x_1,p_1) \rangle \int d^4x_2 \langle S(x_2,p_2) \rangle}$$

average emission function

$$C_{av}(q,k) = \frac{\int d^4 x_1 d^4 x_2 \langle S(x_1, p_1) \rangle \langle S(x_2, p_2) \rangle |\Psi(k, (x_1 - x_2))|^2}{\int d^4 x_1 \langle S(x_1, p_1) \rangle \int d^4 x_2 \langle S(x_2, p_2) \rangle}$$

emission function fluctuations

_∢ ≣ ▶

HBT of fluctuating fireballs II

- event by event emission function similar to average emission function
- small source fluctuations
- spectra do not fluctuate event by event much

azHBT in Au-Au at 200GeV (third order event plane) what is the origin of the $cos(3\Phi)$ angular dependence (Plumberg, Shen, Heinz, 2013)

- deformed geometry + radial flow
- triangular flow

- OR both flow and geometry
- OR both flow and inverted geometry (example)

HBT third order reaction plane, smooth density (example)

HBT third order reaction plane $R_{0.3}^2$

fair agreement with PHENIX

< ∃⇒

HBT third order reaction plane $R_{s,3}^2$

0-20%

- ∢ ≣ ▶

2

compatible with PHENIX data for 20-60%, tension for 0-20%

azHBT in Pb-Pb at 2.76TeV (second order reaction plane)

- eccentricity and elliptic flow give azimuthal angle dependence
- fair agreement with data

azHBT in Pb-Pb at 2.76TeV (third order reaction plane)

- similar as Au-Au at RHIC
- small negative $R_{s,3}^2$
- negative, k_{\perp} depend. $R_{o,3}^2$

3

Summary

- HBT with event by event hydrodynamics
- angle averaged radii small effect of fluctuations small emission function fluctuations
- azHBT (second order reaction plane) fair agreement with data
 Au-Au (200GeV), Pb-Pb (2.76TeV)
- ► azHBT (third order reaction plane) fair agreement for R²_{out,3} - Au-Au (200GeV) deviation for R²_{side,3} (0-20%)