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Distinctive Correlation Patterns Observed
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Specific longitudinal and azimuthal angular correlation

patterns are observed experimentally
>

It is widely believed that various fluctuations play curial roles
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Fluctuations AII AIong
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e.g. jet deposition;
hydro fluctuations
see e.g. discussions in Kapusta, Muller, Stephanov, PRC201 2

To understand the impact of various fluctuations on final state
observables, there are in fact TWO QUESTIONS:

* How/when/where/why a certain fluctuation occurs?

* Once created, how a fluctuation propagates

L :
further within the system? \/Ve deal with

4 this question



Sound wave in fluid

The short answer:
a fluctuation (if small) spreads out
in a fluid in the form of (superposed)
sound waves, like ripples on a pond

This however could become highly nontrivial,
if the fluid itself is in motion
(such as the fireball in heavy ion collisions),
i.e. ripples on a flowing stream




Hydrodynamics Framework

The background flow is described by THY
solutions to hydrodynamic equations e

In this work we use ideal hydro, and conformal E.o.S

™" = (e + p)uf'u” — g""p, p = C§€

We use usual convenient coordinates for heavy ion collisions:
t = T coshy, z = 7T sinhn,
T = p COSQ, y = p sino.

The hydro equations read:
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Hydrodynamic Framework

The background flow is described by THY.  _ 0
solutions to hydrodynamic equations H

In this work we use ideal hydro, and conformal E.o.S

T = (e + p)u*'u” — g"p, p = Cle

Sound wave modes are described in a perturbative way as
solutions to linearized hydro equations
on top of given background flow solution

P = po+pi1 ut = ug + uff

- THY ~ [THY 4 {TH) > T =0




Linearized Hydrodynamic Equations

Sound wave modes are described in a perturbative way as
solutions to linearized hydro equations
on top of given background flow solution

p=pot+p1 ut = uy +uf

> T (TR} + {11} —— T, =0
In the coordinates we use, the linearized egs. read:
0 = p":l‘) + 5+ TP ol +uf, + il )
0 = pou, + 2= Pﬁl’o"'l' s 1fc3 D;é"-
0 = pouf , — %31)0!17 + %g(%pl,/h
c s PLs
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On Top of Bjorken Flow

One well-known solution is the Bjorken flow

We use usual convenient coordinates for heavy ion collisions:
f =7 coshn, 2. =: T :5inh,
r = p COoSQ, y = p sino.

The hydro equations read:

1 I
mT T LS B T I B ’ ~
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/)
The background flow solution reads:

po(r) = p(ro)re T /T4 wfj(r) = (1,0,0,0)
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Linearized Egs. on top of Bjorken Flow
The linearized equations now read:

p
- Pouq P1 1 n P - al
0 = p T T £z 1 +03p1-'f +1’0(“1-77 T Uy, ug);
2 — c2 ¢t P
- n —— 8 1
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Poviy,r — —Poth + 7 1+2Phe " u,u, = 1 requires u] = 0

Oy o T e
&

The strategy is to go toward 2nd order differentiation with
separable variables, by combining these eqns into:
d=pi/po  &(1,m, p, &) = o(7,m)0L(p, D)

. £ . 9 .
‘)i..pp + _‘)L.p + ,?()l.d)d) = —Ww"0},

AR . W T 22 e SANR Hoss e —2 25,
bl (’(’ll-'l'l)f" = (3 —cg)w™ T + (W77 =2+ ¢5)0)r + (3¢g " — 2)T0) 77 + €5 T O 777

N.B. One can also study simpler cases: purely longitudinal and purely transverse sound wave
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General Sound Wave Solutions

The equations after separation indicate 01(p, @) ~ Jm(wp) e,
at the following form for eigen-modes: 5"(73 n) ~ L W (T).

These eventually lead to the following general solutions:

oo o0
o(1,m,p,0) = Z/ dw/ dk eik"Jm(wp)eim‘bl*if“’(’r).
m YO — 00

with auxiliary functions:
W(r) = ArwmWi(T) + BrwmWa(T) + CrowmW3(7),

’ T _’;Ci_,,k e [X— ("f — 20 9
Wi(r) = (;) Z (wT)** [ = J_ap (CowT) = (cswT)J1—a (CswT)|,
. T . 1-c3 , - ] —ic® — 200 '
Wa(r) = (;) 7T () ""[ = Jay (CowT) + (cswT ), —1(cswT)],

P > 4 .2 . = .2 o)
o qaed wmiee T4 Cytdop THcg—2ar 4 o9
”3(1 ) = (w: ) TCs 1"2[21 84 s s—l y —CWT /4]

three coefficients for three independent modes,

entirely fixed from given perturbation at occurring time.
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On Top of Hubble Flow

Another well-known solution is the 3D Hubble flow

We use following convenient coordinates:
t = T coshn. z = 7 sinhn cos#,
r = 7 sinh7n sinf cos y = 71 sinhn sinf sin ¢,

The hydro equations read:
TN = T+ T L 4+ T+ T + T T + D7 T 4 DT 4 T, T™
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In these coordinates, the background flow solution reads:
Po(To)T 3(1+e,)
L =




Linearized Egs. on top of Hubble Flow
The linearized equations now read:

0 1 " 3 x: v " 49 )(()\h 0.0 o 008 0 o
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The strategy is to go toward 2nd order differentiation with
separable variables, by combining these eqgns into:
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General Sound Wave Solutions

The equations after separation indicate

11,0, = P (7, m)Y;" (6,
at the following form for eigen-modes: Bl % ;p" (7MY, (6, 9)

These eventually lead to the following general solutions:

pl('rﬂho-.é) . T 3_':%__1 = ¥ ! 2 m X
e = ] a IE'm /_Ooaz.m(k)coslﬂkln(r/r )| Ri(k,n)Y,™ (0, ¢) dk

T 303—! o0 . ’ m
HEFT Y [ tum(0)sinBein(r/r) Rulk,m)Yi™(6,9) dk

I.m

with special functions:

,1+3/2, —sinh®p)

C(l+1+4:k)(1+1-1ik) l+1+4ik 1+1-ik
Ri(k,n) = \/ ( 7."22’“1"2113/2)2 )smhl n 2F( 5 . =

-

the two coefficients for radially inward/outward modes,
entirely fixed from given perturbation at occurring time.



Showcasing Resulting Correlations
As an example, we show pressure-pressure
rapidity correlations arising from C(An) = /dn,o‘(r, m)d(r.m + An)
an earlier Guassian perturbation
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longitudinal wave on top of Bjorken flow
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Showecasing Resulting Correlations
As an example, we show pressure-pressure

rapidity correlations arising from C(An) = /dmo‘(r, m)(r,m + An)
an earlier Guassian perturbation
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3D wave on top of Bjorken flow
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As an example, we show pressure-pressure
rapidity correlations arising from
an earlier Guassian perturbation
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Showecasing Resulting Correlations

C(An) = /dmd(‘r. m )o(r,m + An)

|
03} | p=0
|
0.2} |
|
I B
O'l. _ [ )
L &)
3 41 =
Y e N
M |/
—01f V
6.0 05 10 1.5 20 25 30
An.

3D wave on top of Hubble flow
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Summary & Outlook

* It is important to understand how fluctuations, after
occurrence, propagate in relativistically expanding fluid.

*We have found complete and analytic sound wave solutions
on top of Bjorken flow.

*We have found complete and analytic sound wave solutions
on top of Hubble flow.

*These sound waves can lead to nontrivial correlation patterns
after propagating for certain time.

* Outlook for future work:
application to phenomenology (hydro fluc., jet, ...);
extension to other flow backgrounds;
analysis of viscous effects.

Thank you!
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BACKUP:Velocity Field for Solutions
on top of Bjorken Flow

o0 o0
o7, m,p,0) = Z/ dw/ dk €1 J,, (wp)e"™PW (1),
m YO0 =0
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BACKUP:Velocity Field for Solutions
on top of Hubble Flow
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