Measurement Of Direct Photon 3rd Order Azimuthal Anisotropy In Au+Au collisions At √s_{NN}=200GeV at RHIC-PHENIX experiment Sanshiro Mizuno for the PHENIX collaboration University of Tsukuba, RIKEN mail to: s1230082@u.tsukuba.ac.jp #### What are direct photons? Direct photons: all photons except those originating from hadron decays. - Good probe since they penetrate the QGP - Created during all stages of the collision #### **Higher Order Azimuthal Anisotropy** $$\frac{dN}{d(\phi-\Psi_n)} = N_0[1+2\sum_{n=1}^\infty v_n cos\{n(\phi-\Phi_n)\}]$$ $$\nu_n = <\cos\{n(\phi-\Phi_n)\} > \Phi_n : \text{Event Plane}$$ $$\Phi_3$$ v_3 comes from participant position fluctuations, viscosity dampens higher order terms. - Define initial geometry calculating model - Constrain η/s of QGP WPCF2014 @ Hungary ## Direct Photon p_⊤ spectra $$a(1+p_T^2/b)^c$$ The p_T spectra from p+p data is fitted and extrapolated below 2 GeV/c. $$Ae^{-p_T/T_{eff}}$$ The excess of p_T spectra are fitted and effective temperature is extracted. It is about 240 MeV. Photons are emitted from very hot medium at early time of collisions. # Direct Photon Elliptic Flow (v₂) P.R.L. 109, 122302(2012) It is observed that positive $\gamma^{dir.}$ v_2 in low p_T and the magnitude of it is comparable to that of hadron v_2 . Photons are emitted at late time of collisions, when temperature is low. #### **Direct Photon Puzzle** #### **Yield enhancement** Suggests early emission when temperature is high at or above 300MeV #### Large elliptic flow (v₂) Suggests late emission, when temperature is low, collective motion is large It is a challenge for models to explain simultaneously the excess of direct photon yield and the large elliptic flow (v_2) . #### **Motivation** To resolve the puzzle and constrain photon production mechanisms, more differential measurements are needed. Higher order azimuthal anisotropy (v₃) Photons have different emission angular pattern depending on their production mechanism. v₃ measurement could constrain photon production mechanism. In this talk, the results for v_3 in several centralities are shown. # **Analysis Flow** 2. $\gamma^{\text{dec.}}$ \mathbf{v}_{n} estimation from π^{0} \mathbf{v}_{n} Mesons spectra are assumed by m_T scaling. Mesons v_n are assumed by NCQ scaling. #### 3. $\gamma^{dir.}$ \mathbf{v}_n calculation R_v measured by external photon conversion method is used. $$\nu_n^{dir.} = \frac{R_{\gamma}\nu_n^{inc.} - \nu_n^{dec.}}{R_{\gamma} - 1}$$ $$R_{\gamma} = N_{inc.}/N_{dec.}$$ 8 ## **Hadronic Decay Photon** p_⊤ spectra : m_⊤ scaling meson p_T spectra meson v₂ 10¹¹ 10⁹ 10⁷ 10⁵ 10³ 10 10⁻¹ 0.2 0.15 0.1 0.05 v_n: quark number scaling 10 p₊(GeV/c)¹⁵ 10 p_{_}(GeV/c)¹⁵ ## Inclusive and decay photon v_n comparison Direct photon v_n are extracted from these deviation via below function. $\nu_n^{dir.} = \frac{R_{\gamma}\nu_n^{inc.} - \nu_n^{dec.}}{R_{\gamma} - 1}$ # The Result of Direct Photon v₃ The magnitude of $\gamma^{dir.}$ v_3 is similar to π^0 , a similar trend as a seen in case of v_2 . Photon azimuthal asymmetries may be affected by expansion of QGP. # Centrality dependence of Direct Photon v₃ η range of RxN(I+O) is from 1.0 to 2.8. Non-zero, positive v_3 is observed in all centrality bins. No strong centrality dependence: similar tendency as for charged hadrons (P.R.L. 107, 252301 (2011)) and π^0 . # $\gamma^{dir.}$ and $\pi^0 \ v_3$ show similar trend The centrality (in)dependence of $\gamma^{dir.}$ v_3 is also observed for π^0 v_3 . # Comparison of $\gamma^{dir.}$ v_n with the two methods The calorimeter and conversion photon measurements are consistent within systematic uncertainty. #### **Summary** Soft photons are expected to provide important keys to understand photon production mechanisms and medium properties. ``` Direct photon v_3 are measured in several centrality bins. It is observed that non-zero and positive \gamma^{\text{dir.}} v_3 the strength of \gamma^{\text{dir.}} v_3 is comparable to hadron v_3. They are similar trend to \gamma^{\text{dir.}} v_2. don't have strong centrality dependence It is similar tendency to hadron v_3. ``` #### **Detector information** Central Arm: Measure electrons and photons $$|\eta| < 0.35$$ Reaction Plane Detector (RxN): Estimate Event Plane Inner: $1.5 < |\eta| < 2.8$ Outer : $1.0 < |\eta| < 1.5$ MPC: Estimate Event Plane $3.1 < |\eta| < 3.8$ **BBC: Estimate Event Plane** $3.1 < |\eta| < 3.9$ #### Photons by external conversion M_{HBD}: Real track M_{vtx}: Measured track **RICH** #### **Published** Real photons in EMCal : 1 - 20 GeV/c large errors at low p_T (resolution, contamination) Virtual photons from e⁺e⁻: 1 - 4 GeV/c #### New method Real photons are measured by e⁺e⁻ pair from external photon conversion at the HBD readout plane. - ✓ less hadron contamination - ✓ good momentum resolution p_T range : 0.4 ~ 5GeV/c Extended to lower p_T low statistics ## **External conversion photon** - 1) real photon converts to e⁺e⁻ in HBD backplane - 2) default assumption: track come from the vertex - 3) momentum of the conversion tracks will be mis-measured (see black tracks) - 4) apparent pair-mass (about 12MeV) will be measured for phtons - 5) assume the same tracks originate in the HBD backplane - 6) re-calculate momentum and pair mass with this "alternate tracking model" 7) for true converted photons M_{atm} will be around zero Real track estimated track #### Comparable measurement is achieved Ncoll-scaled pp fit external conversion pp virtual photon pp in EMCal(Run2003 data) pp in EMCal(Run2006 data) AuAu in EMCal(Run2004 data) AuAu from virtual photon(Run4 data) Using external photon conversion method achieved good agreement with previous results. ## The analysis information $\gamma^{\text{dir.}}$ v_n with external conversion photon analysis charged π v_n $\gamma^{\text{inc.}}$ v_n with external conversion photon analysis R γ with external conversion photon analysis $\gamma^{\text{dir.}} \, v_n$ with Calorimeter $\pi^0 \, v_n$ with Calorimeter $\gamma^{\text{inc.}} \, v_n$ with Calorimeter Ry with external conversion photon analysis # Comparison $\gamma^{dir.}$ v_3 $RxN(I+O) : 1.0 < |\eta| < 2.8$ $RxN(In)+MPC: 1.5 < |\eta| < 3.8$ The magnitude of v_3 is comparable. preliminary p_T(GeV/c) # Comparison inclusive photon v_n Inclusive photon v_n is measured via conversion photon, and p_T range is extended to low p_T region. ## Input decay photon: p_⊤ spectra π^\pm and π^0 p_T spectra are fitted and its function is used for estimating the other meson p_T spectra by m_T scaling. They are used as a input. ## Input decay photon: p_T spectra The ratio of Each meson p_T spectra to π^0 p_T spectra is known to be constant at high p_T . | The table of each meson spectra ratio to π^0 | | |--|------------------| | η/π^0 | 0.45 ± 0.060 | | ω/π^0 | 0.83 ± 0.120 | | $ ho/\pi^0$ | 1.00 ± 0.300 | | η'/π^0 | 0.25 ± 0.075 | #### **Yield: data vs theories** Linnyk et al.: PHSD transport model; Linnyk, Cassing, Bratkovskaya, P.R.C 89, 034908(2014) vHees et al.: Fireball model; van Hees, Gale, Rapp; P.R.C 84, 054906(2011) Shen et al.: Ohio hydro for two different initial conditions; Shen, Heinz, Paquet, Gale; P.R.C 84, 064903(2014) The yield itself is still not perfectly described. # Comparison $\gamma^{dir.}$ v_2 with theoretical calculations van Hees et al: P.R.C 84, 054906 (2011) Linnyk et al.: PHSD model, private communication $\gamma^{\text{dir.}}$ v_2 in high E_T region are consistent with 0 within systematic uncertainty, while π^0 has positive v_2 . # photon v_n measurement by ALICE It is also observed that $\gamma^{dir.}$ v_2 is positive in low p_T at LHC-ALICE. v_3 measurement is ongoing.