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Motivation

The strong baryon-baryon interaction can be studied in the heavy ion collision
experiments using the Final State Interaction (FSI) correlation technique.

It is based on the analysis of the momentum correlations between corresponding
baryons, produced in the collision. The measured two-particle correlation functions
are influenced by the final state interaction effect.

The LHC works like “the factory of particles”, producing in heavy ion collisions a
great amount of various particles, including multi-strange, charmed and beauty ones,
allowing one to study the fundamental interactions between different hadron species.

Using the FSI method one can infer the parameters describing strong interaction
also in such particle pairs, for which it is difficult to do in other experiments,
including the traditional scattering ones.

The extraction of this information makes it possible to check the correctness of
hadron-hadron strong interaction models, constrain corresponding interaction
potentials, and also improve existing cascade models (like UrQMD) by including into
them the information about still unknown baryon-antibaryon annihilation
cross-sections.
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The STAR experiment
Baryon-baryon p − Λ, p̄ − Λ̄ and baryon-antibaryon p − Λ̄, p̄ − Λ correlation functions in
10% most central RHIC Au + Au collisions at

√
sNN = 200 GeV

J. Adams et. al. (STAR) Phys. Rev. C, 74,064906, (2006).

Protons and antiprotons with 0.4 < pT < 1.1 GeV/c and |y | < 0.5

Lambdas and antilambdas with 0.3 < pT < 2.0 GeV/c and |y | < 1.5

were selected for analysis.

The correlation functions are constructed as

C(k∗) =
Dsame event(k

∗)

Dmixed events(k∗)
,

and then are corrected for pair purity, defined as the fraction of correctly identified
primary particle pairs among all the selected ones

Particle Purity = Pid × Fprim,

Pair Purity = Particle1 Purity× Particle2 Purity,

Ccorr (k
∗) =

Cmeas(k
∗)− 1

λ(k∗)
+ 1.

The estimated mean pair purity in the experiment is λ = 17.5± 2.5%
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Lednický & Lyuboshitz analytical model

R. Lednický, V. L. Lyuboshitz, Yad. Fiz. 35, 1316 (1982).

C(k∗) =

〈∣∣∣ΨS
−k∗(r∗)

∣∣∣2〉 ,
where the wave function ΨS represents the approximate stationary solution of the
scattering problem

ΨS
−k∗(r∗) = e−ik∗·r∗ +

f S(k∗)

r∗
e ik

∗·r∗ .

The effective range approximation for the scattering amplitude is utilized

f S(k∗) =

(
1
f S0

+
1
2
dS

0 k
∗2 − ik∗

)−1

,

where f S0 is the scattering length and dS
0 is the effective radius for a given total spin

S = 1 or S = 0.

The particles are assumed to be unpolarized (the polarization P = 0) ⇒
the fractions of pairs in the singlet and triplet states are ρ0 = 1/4(1− P2) = 1/4,
ρ1 = 1/4(3 + P2) = 3/4.
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Lednický & Lyuboshitz analytical model

The pair separation distribution (source function) S(r∗) = d3N/d3r∗ is assumed to be
Gaussian

d3N/d3r∗ ∝ e
− r∗2

4r20 ,

where r0 is the effective source radius.
The correlation function can be calculated analytically by averaging ΨS over the total
spin S and the distribution of the relative distances S(r∗)

C(k∗) = 1 +
∑
S

ρS

[
1
2

∣∣∣∣ f S(k∗)

r0

∣∣∣∣2(1− dS
0

2
√
πr0

)
+

2<f S(k∗)√
πr0

F1(Qr0)− =f
S(k∗)

r0
F2(Qr0)

]
,

with F1(z) =
∫ z

0 dxex
2−z2/z and F2(z) = (1− e−z2)/z .

The term − dS0
2
√
πr0

corresponds to the correction accounting for deviation of ΨS from the
true wave function inside the range of the strong interaction potential.
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pΛ source function projections from HKM

Source radii from the HKM:

rHKM0 = 3.64 fm for pΛ

rHKM0 = 3.62 fm for pΛ̄
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Baryon-baryon pΛ ⊕ p̄Λ̄ correlation function
The scattering lengths (f s0 = 2.88 fm, f t0 = 1.66 fm) and effective radii (d s

0 = 2.92 fm,
d t

0 = 3.78 fm) for p − Λ and p̄ − Λ̄ interaction are taken from
F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999).

Source radius from HKM rHKM0 = 3.64 fm.

Experimental source radius r exp0 = 3.09± 0.30+0.17
−0.25 ± 0.2 fm.
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Baryon-antibaryon p̄Λ ⊕ pΛ̄ correlation function

Assumptions made:

f s = f t = f

d s
0 = d t

0 = 0

=f0 > 0

Source radius from the HKM:
rHKM0 = 3.62 fm.

Scattering length:
<f0 = −1.0± 0.5 fm

=f0 = 2.23± 0.63 fm

Experimental source radius value:
r exp0 = 1.50± 0.05+0.10

−0.12 ± 0.3 fm

Experimental scattering length:
<f0 = −2.03± 0.96+1.37

−0.12 fm

=f0 = 1.01± 0.92+2.43
−1.11 fm
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Residual correlations influence

Residual correlations can exist in the pairs which include secondary particles if the
secondary particle carries most of the momentum of its parent, and the parent was
correlated with the second particle making the pair (or its parent).

The most particle interactions causing residual correlations are unknown, so at the
moment there is no possibility to reliably account for its effect when constructing
experimental correlation functions.

Fractions of different pΛ pairs
Pairs Fractions, %
pprim − Λprim 15
pΛ − Λprim 10
pΣ+ − Λprim 3
pprim − ΛΣ0 11
pΛ − ΛΣ0 7
pΣ+ − ΛΣ0 2
pprim − ΛΞ 9
pΛ − ΛΞ 5
pΣ+ − ΛΞ 2
pprim − pprim 7
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Baryon-baryon source radii for LHC

Source radii from the HKM:

rHKM0 = 3.96 fm for pΛ

rHKM0 = 4.03 fm for ΛΛ

rHKM0 = 3.79 fm for pp
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Residual correlations influence
We try to account for the residual correlations phenomenologically and describe the pΛ̄
correlation function not corrected for pair purity with a modified analytical expression.

The data for uncorrected CF are taken from
G. Renault for the STAR Collaboration, Acta Phys. Hung. A24, 131 (2005).

C(k∗) = λ(k∗)C(k∗) + (1− λ(k∗))(1− βe−4k∗2R2
), (1)

λ(k∗) = aλexp(k∗), where λexp(k∗) = (Cuncorr (k
∗)− 1)/(C(k∗)− 1)

Two additional parameters:

β > 0 – amplitude of annihilation dip in parent correlations

R � r0 – dip inverse width

Parameters a, <f0, =f0, β, and R are left to vary freely.

The extracted parameter values are:

a = 1.28± 0.84,

<f0 = −0.05± 0.68 fm,

=f0 = 1.41± 1.07 fm,

β = 0.029± 0.005,

R = 0.45± 0.06 fm.
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Residual correlations influence
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Conclusions

Study of baryon and antibaryon correlations provides a powerful tool for measuring
space-time evolution of heavy ion collisions and for extracting the parameters of
strong interaction between emitted particles.

The p − Λ⊕ p̄ − Λ̄ and p̄ − Λ⊕ p − Λ̄ correlation functions, measured in 10% most
central Au+Au collisions by STAR at

√
sNN = 200 GeV, were reproduced using

Lednicky and Lyuboshitz analytical formalism with the source radii extracted from
the hydrokinetic model (HKM)

To take into account the residual correlations influencing baryon-antibaryon
femtoscopic effects, a modified analytical approximation has been applied. The real
and imaginary parts of the spin averaged scattering lenghts have been extracted for
baryon-antibaryon pairs.

New high statistics data from RHIC and LHC will provide measurements of various
particle pairs, including baryon-antibaryon ones, allowing to investigate the particle
interactions in these pairs.
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Thank you for your attention!
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HKM model
We perform computer simulations of the experiment by STAR within the HKM model. It
simulates the full process of evolution of the system formed in nuclear or particle collision
consisting of two stages:

3+1D hydrodynamical expansion of thermally and chemically equilibrated matter –

described within ideal hydrodynamics approximation (needs the equation of state)

Gradual decoupling after losing chemical and thermal equilibrium –

described within hydro-kinetic approach with switching to UrQMD cascade
at space-like hypersurface
or sudden switch to UrQMD cascade at the hadronization hypersurface

The model gives us particle distribution functions d6N
d3xd3p at the chosen switching

hypersurface.

Using the Monte-Carlo procedure according to these functions we generate particles
momenta and coordinates, which serve as the input to the UrQMD hadronic cascade.

To start ideal hydrodynamics stage in HKM one should specify the initial conditions at
the starting proper time τ0:

Initial energy density (or entropy) profile ε(r)

Initial rapidity profile (initial flow) y(r)
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HKM model

We start hydrodynamics at τ0 = 0.1 fm/c (prethermal stage imitation) and work in
the longitudinal boost-invariance approximation, in mid-rapidity region.

The initial energy density profile corresponding to the MC-Glauber model is
calculated using GLISSANDO code (W. Broniowski, M. Rybczynski, P. Bozek,
Comput. Phys. Commun., 180, 69 (2009)).

Initial flow is usually supposed to be yT = α rT
R2(φ)

, yL = η (boost-invariance),
where α is another model parameter, in current analysis α = 0.45.

Sudden switch from hydrodynamics to UrQMD at the isotherm T = 165 MeV.
The hadrons distribution functions are calculated using the Cooper-Frye formula

p0
d3Ni

pTdpTdφpdy
=

∫
σsw

pµdσµf
eq
i (p · u(x),T (x), µi (x))
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HKM model

The HKM model gives us the source function S(r∗) in the pair center of mass system.

S(r∗) =

∑
i 6=j δ∆(r∗ − ri + rj)∑

i 6=j 1
,

where δ∆(x) = 1 if |x | < ∆p/2 and 0 otherwise with ∆p being the size of the histogram
bin.

To extract the FSI parameters we fit the obtained S(r∗) with the Gaussian, that gives us
the source size r0.
Then we fit the experimental correlation function with the Lednický & Lyuboshitz model,
fixing the r0 parameter and leaving the FSI parameters to vary freely.
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