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● Elliptic flow (v
2
) is sensitive to the system 

evolution

● Constrains the initial conditions, deconfined 

phase, particle production mechanisms

● Identified particle v
2
 allows for precision 

measurements 

● Adds further constraints to initial conditions, 

deconfined phase, particle production 

mechanisms

● Probes the freeze-out conditions of the system 

(temperature, radial flow, ...)

● Checks the number of constituent quarks (NCQ) 

scaling
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The reaction plane angle can not be directly measured in high energy nuclear
collisions, but can be estimated from the particle azimuthal distribution event-by-
event. Then the different harmonic flow coefficients are reconstructed from two or
many particle azimuthal correlations. This introduces uncertainty in the analysis,
discussed in more detail in the methods section, as the azimuthal correlations are not
determined solely by anisotropic flow but have other contributions, usually referred
to as nonflow and in case of two-particle correlations quantified by parameters d

n

:
⌦
cos[n(f

i

�f
j

)]
↵

=
⌦
v

2
n

↵
+d

n

. (2)

Anisotropic flow can fluctuate event to event, both in magnitude and direction
even at fixed impact parameter. We describe flow fluctuations by
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One of the important sources of flow fluctuations are fluctuations in the initial geom-
etry of the overlapping region due to the random nature of the interaction between
constituents of the two nuclei. The participants are those constituents which partake
in the primary interaction. The principal axis of the participant zone can deviate
from the reaction plane. Fig. 2 shows the axes in the participant coordinate system,
compared to the reaction plane system. It is important to distinguish between flow
values measured in these two systems; the values in the reaction plane system be-
ing always smaller than in the participant plane system: v2,PP > v2,RP. We discuss
flow fluctuations due to fluctuations in the initial participant zone geometry in more
detail in section 3.3.4.

2 Experimental methods

2.1 Event plane method

In the standard event plane method [3, 15] one estimates the azimuthal angle of the
reaction plane from the observed event plane angle determined from the anisotropic
flow itself. This is done for each harmonic, n, of the Fourier expansion. The event
flow vector Qn is a 2d vector in the transverse plane:
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The tale of three ridges…. 

!  Manifestation of QCD in different high density systems  

!  But is there an effective mechanism that rules them all? Is it initial 
state effect, final state effect or both? 

!  What is its detailed pT, η, and centrality dependence? How these 
dependences compare between different systems? 
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Geometry and harmonic flow 

!  How (εn,Φn
*) are transferred to (vn, Φn)? 

!  What is the nature of final state (non-linear) dynamics? 
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event plane via Eq. (8): ΨP
n and ΨP

m for positive η and ΨN
n and ΨN

m for negative η. This leads to two statistically
independent estimates of the correlator, which are averaged to obtain the final signal. Because of the symmetry
of the subevents, the product of resolution factors in the denominator is identical for each measurement, and the
event-averaged correlator can be written as:

〈cos k(Φn − Φm)〉 =
〈

cos k(ΨP
n −ΨN

m)
〉

+
〈

cos k(ΨN
n −ΨP

m)
〉

Res{kΨP
n}Res{kΨN

m}+Res{kΨN
n}Res{kΨP

m}
. (12)

To measure a three-plane correlation (3PC), three non-overlapping subevents, labeled as A, B and C, are chosen
to have approximately the same η coverage. In this analysis, subevents A and C are chosen to be symmetric about
η = 0, and hence have identical resolution, while the resolution of subevent B in general is different. There are 3! = 6
independent ways of obtaining the same three-plane correlator. But the symmetry between A and C reduces this to
three pairs of measurements, which are labeled as Type1, Type2 and Type3. For example, the Type1 measurement
of the correlation 2Φ2 + 3Φ3 − 5Φ5 is obtained from 2ΨB

2 + 3ΨA
3 − 5ΨC

5 and 2ΨB
2 + 3ΨC

3 − 5ΨA
5 , i.e. by requiring the

Ψ2 angle to be given by subevent B:

〈cos(2Φ2 + 3Φ3 − 5Φ5)〉Type1 =

〈

cos(2ΨB
2 + 3ΨA

3 − 5ΨC
5 )
〉

+
〈

cos(2ΨB
2 + 3ΨC

3 − 5ΨA
5 )

〉

Res{2ΨB
2 }Res{3ΨA

3 }Res{5ΨC
5 }+Res{2ΨB

2 }Res{3ΨC
3 }Res{5ΨA

5 }
. (13)

Similarly, the Type2 (Type3) measurement is obtained by requiring the Ψ3 (Ψ5) to be measured by subevent B. Since
the three angles in each detector, e.g. ΨA

2 , Ψ
A
3 and ΨA

5 , are obtained from orthogonal Fourier modes, the different
types of estimates for a given correlator are expected to be statistically independent.
The resolution factors Res{jnΨn} are obtained from a two-subevent method (2SE) and a three-subevent method

(3SE) [4]. The 2SE method follows almost identically the 2PC procedure described above: two subevents symmetric
about η = 0 are chosen and used to make two measurements of the event plane at the same order n: ΨP

n and ΨN
n .

The correlator 〈cos jn(ΨP
n −ΨN

n )〉 is then calculated, and the square-root yields the desired resolution [8]:

Res{jnΨn} =
√

〈cos jn(ΨP
n −ΨN

n )〉 ≡ Res{jnΨP
n} ≡ Res{jnΨN

n} . (14)

In the 3SE method, the value of Res{jnΨn} for a given subevent A is determined from angle correlations with two
subevents B and C covering different regions in η:

Res{jnΨA
n} =

√

〈cos jn (ΨA
n −ΨB

n)〉 〈cos jn (ΨA
n −ΨC

n )〉
〈cos jn (ΨB

n −ΨC
n )〉

.

(15)

The 3SE method does not rely on equal resolutions for the subevents, and hence there are many ways of choosing
subevents B and C.
In the case of the weighted correlators given by the SP method, the resolution terms defined by Eqs. 14 and 15 are

instead calculated as [36]:

Res{jnΨn}w =
√

〈(qPnqNn )j cos jn(ΨP
n −ΨN

n )〉 , (16)

and

Res{jnΨA
n}w =

√

〈(qAn qBn )j cos jn (ΨA
n −ΨB

n)〉 〈(qAn qCn )j cos jn (ΨA
n −ΨC

n )〉
〈(qBn qCn )j cos jn (ΨB

n −ΨC
n )〉

. (17)

C. Analysis procedure

The large η coverage of the ID, ECal and FCal, with their fine segmentation, allows many choices of subevents
for estimating the event planes and studying their correlations over about ten units in η. The edge towers of the
FCal (approximately 4.8 < |η| < 4.9) are excluded to minimize the non-uniformity of ET in azimuth, as in a previous
analysis [8]. These detectors are divided into a set of small segments in η, and the subevents are constructed by
combining these segments. A large number of subevents can be used for measuring both the raw correlation signal
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event plane via Eq. (8): ΨP
n and ΨP

m for positive η and ΨN
n and ΨN

m for negative η. This leads to two statistically
independent estimates of the correlator, which are averaged to obtain the final signal. Because of the symmetry
of the subevents, the product of resolution factors in the denominator is identical for each measurement, and the
event-averaged correlator can be written as:

〈cos k(Φn − Φm)〉 =
〈

cos k(ΨP
n −ΨN

m)
〉

+
〈

cos k(ΨN
n −ΨP

m)
〉

Res{kΨP
n}Res{kΨN

m}+Res{kΨN
n}Res{kΨP

m}
. (12)

To measure a three-plane correlation (3PC), three non-overlapping subevents, labeled as A, B and C, are chosen
to have approximately the same η coverage. In this analysis, subevents A and C are chosen to be symmetric about
η = 0, and hence have identical resolution, while the resolution of subevent B in general is different. There are 3! = 6
independent ways of obtaining the same three-plane correlator. But the symmetry between A and C reduces this to
three pairs of measurements, which are labeled as Type1, Type2 and Type3. For example, the Type1 measurement
of the correlation 2Φ2 + 3Φ3 − 5Φ5 is obtained from 2ΨB

2 + 3ΨA
3 − 5ΨC

5 and 2ΨB
2 + 3ΨC

3 − 5ΨA
5 , i.e. by requiring the

Ψ2 angle to be given by subevent B:

〈cos(2Φ2 + 3Φ3 − 5Φ5)〉Type1 =

〈

cos(2ΨB
2 + 3ΨA

3 − 5ΨC
5 )
〉

+
〈

cos(2ΨB
2 + 3ΨC

3 − 5ΨA
5 )

〉

Res{2ΨB
2 }Res{3ΨA

3 }Res{5ΨC
5 }+Res{2ΨB

2 }Res{3ΨC
3 }Res{5ΨA

5 }
. (13)

Similarly, the Type2 (Type3) measurement is obtained by requiring the Ψ3 (Ψ5) to be measured by subevent B. Since
the three angles in each detector, e.g. ΨA

2 , Ψ
A
3 and ΨA

5 , are obtained from orthogonal Fourier modes, the different
types of estimates for a given correlator are expected to be statistically independent.
The resolution factors Res{jnΨn} are obtained from a two-subevent method (2SE) and a three-subevent method

(3SE) [4]. The 2SE method follows almost identically the 2PC procedure described above: two subevents symmetric
about η = 0 are chosen and used to make two measurements of the event plane at the same order n: ΨP

n and ΨN
n .

The correlator 〈cos jn(ΨP
n −ΨN

n )〉 is then calculated, and the square-root yields the desired resolution [8]:

Res{jnΨn} =
√

〈cos jn(ΨP
n −ΨN

n )〉 ≡ Res{jnΨP
n} ≡ Res{jnΨN

n} . (14)

In the 3SE method, the value of Res{jnΨn} for a given subevent A is determined from angle correlations with two
subevents B and C covering different regions in η:

Res{jnΨA
n} =

√

〈cos jn (ΨA
n −ΨB

n)〉 〈cos jn (ΨA
n −ΨC

n )〉
〈cos jn (ΨB

n −ΨC
n )〉

.

(15)

The 3SE method does not rely on equal resolutions for the subevents, and hence there are many ways of choosing
subevents B and C.
In the case of the weighted correlators given by the SP method, the resolution terms defined by Eqs. 14 and 15 are

instead calculated as [36]:

Res{jnΨn}w =
√

〈(qPnqNn )j cos jn(ΨP
n −ΨN

n )〉 , (16)

and

Res{jnΨA
n}w =

√

〈(qAn qBn )j cos jn (ΨA
n −ΨB

n)〉 〈(qAn qCn )j cos jn (ΨA
n −ΨC

n )〉
〈(qBn qCn )j cos jn (ΨB

n −ΨC
n )〉

. (17)

C. Analysis procedure

The large η coverage of the ID, ECal and FCal, with their fine segmentation, allows many choices of subevents
for estimating the event planes and studying their correlations over about ten units in η. The edge towers of the
FCal (approximately 4.8 < |η| < 4.9) are excluded to minimize the non-uniformity of ET in azimuth, as in a previous
analysis [8]. These detectors are divided into a set of small segments in η, and the subevents are constructed by
combining these segments. A large number of subevents can be used for measuring both the raw correlation signal
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subevent.

The results in Fig. 1 demonstrate, that depending on
q2,a one can select events with average flow values varying
more than a factor of two. How well one can “resolve” the
flow fluctuations depends on the number of particles used
to calculate the flow vector as well as, though weakly, on
flow magnitude itself. We find that for centrality 20–25%,
the width of the v2 distribution for a fixed q2,a value is
about factor of 1.5 smaller than that for unbiased event
sample (changing from 0.031 to 0.022); it decreases for
about 20% if one double the size of the subevent (double
the multiplicity) used for q2 determination.

Let us demostrate now how in practice one can obtain
an information about the v

n

distributions, correspond-
ing to di↵erent cuts on the q

n,a

values, from the fits to
the q

n,b

-distributions. Figure 2 shows distribution in q

n,b

(subevent-b) for three di↵erent cuts on q

n,a

, separately
for the second and third harmonic flow. All q

n,b

distribu-
tions in Fig. 2 are fit to the BG functional form to extract
the corresponding mean flow values and the correspond-
ing width (see, e.g. [1]). It is remarkable that the fits
are very good not only for the unbiased q-distributions
but also to the ones corresponding to the low flow and
high flow “engineered events” (corresponding to the 5%
lowest and 5% highest q

n,a

events). Using the extracted
parameters we plot the corresponding v

n

distributions in
Fig. 3 (shown by dashed lines) and compare to the actual
(“true”) v

n

distributions, which is known in this Monte-
Carlo simulation (shown as a histogram). One finds an
excellent agreement between the two indicating that the
v

n

distributions in the “shape engineered” events are very
close to the BG form.

Nonflow e↵ects. The ESE approach described above is
based on using two subevents. In this case possible non-
flow e↵ects can be separated in two major categories
(a) when nonflow e↵ects are present within each of the
subevents, but there is no nonflow correlations between
subevents “a” and “b”, and (b) when nonflow correla-
tions are present between, as well as within, subevents.
As we show below one should try to minimize the nonflow
correlations between the two subevents which are used for
ESE selection and physical analisys, respectively. A prac-
tical solution to that might be to use subevents which are
separated by a significant (pseudo)rapidity gap.

The case (a) does present a certain challenges to the
analysis, but no more than the one in the conventional
flow analysis. Once the event selection is done with q

n,a

cuts, the flow in the selected events can be estimated
using particles in subevent “b” with standard methods
including many-particle cumulant analysis. The case (b)
is significantly more complicated. Below we only discuss
possible biases, without trying to resolve the problem.

We simulate nonflow e↵ect by assuming that half of all
particles in the entire event are produced in pairs with
both particle in a pair emitted with the same azimuthal

2,b
q

0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f e
ve

nt
s

1

10

210

310

410
  Centrality 20-25%

no cuts
 upper 5%

2,a
 q

 lower 5%
2,a

 q

3,b
q

0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f e
ve

nt
s

1

10

210

310

410
  Centrality 20-25%

no cuts
 upper 5%

3,a
 q

 lower 5%
3,a

 q

FIG. 2. (color online) q2,b and q3,b distributions in the event
samples selected by di↵erent cuts on the corresponding qn,a-
vector magnitude indicated in the plot. The lines show the
BG fit to the distribution.

angle. Each particle is assigned randomly to one of the
two subevents. In this case the nonflow parameter � =
1/(2M), where M is the (full) event multiplicity, which
roughly corresponds to the nonflow estimates in real LHC
events for particles at midrapidity |⌘| < 0.8.

Figure 4 presents the results for flow calculation in
subevent “a” using 2- and 4-particle cumulant methods
as function of q2,b. The expectations based on simulated
flow are also shown. One observes a significant bias due
to nonflow, leading to overestimate the flow values in high
flow selected events and underestimate in the low flow se-
lected events. This trend is due to positive character of
the nonflow correlations. The corresponding bias in cor-
responding v distributions is shown in Fig. 5. Note that
even though the bias for mean values of flow is somewhat
modest, at large values of v

n

the actual distribution could
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FIG. 3. (color online) Actual (true) v2 and v3 distributions
in the event samples selected by di↵erent cuts on the corre-
sponding qn-vector magnitude indicated in the plot compared
to that extracted from the BG fits to qn,b distribution shown
in Fig. 2 (dashed lines). Note that the lines are not the fit to
the histograms!

di↵er by order of magnitude from the one deduced from
q-distribution fits.

Below we discuss very briefly several analyses, which
can profit from the event shape engineering.

The chiral magnetic e↵ect proposed in [19–21] is a charge
separation along the magnetic field. A correlator sensi-
tive to the CME was proposed in Ref. [22]:

hcos(�
↵

+ �

�

� 2 
RP

)i , (9)

where subscripts ↵, � denotes the particle type. The
STAR [23, 24], as well as the ALICE [25] collaboration
measurements of this correlator are consistent with the
expectation for the CME and can be considered as evi-
dence of the local strong parity violation. The ambiguity
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FIG. 4. (color online) Elliptic flow measured with 2- (red
points) and 4-particle (blue) cumulant method in subevent
“a” as a function of the corresponding q2,b magnitude. Solid
symbols correspond to centrality 20-25%, and open symbols
to 0-5% centrality. The true (simulated) values are shown
by green markers, as expected for 2-particle cumulant results
and by magenta for 4-particle cumulant results.

in the interpretation of experimental results comes from
a possible background of (the reaction plane dependent)
correlations not related to CME. Note that a key ingre-
dient to CME is the strong magnetic field, while all the
background e↵ects originate in the elliptic flow [22]. This
can be used for a possible experimental resolution of the
question. One possibility is to study the e↵ect in central
collisions of non-spherical uranium nuclei [12], where the
relative contributions of the background (proportional to
the elliptic flow) and the CME (proportional to the mag-
netic field), should be very di↵erent in the tip-tip and
body-body type collisions. The second possibility would
be to exploit the large flow fluctuations in heavy-ion colli-
sions as discussed in [12, 26] and the ESE would be a tech-
nique to perform such an analysis. (Note also that the
magnetic field depends very weakly on the initial shape
geometry fluctuations [26].) Yet another test, proposed
in [27], is based on the idea that the CME, the charge sep-
aration along the magnetic field, should be zero if mea-
sured with respect to the 4-th harmonic event planes,
while the background e↵ects due to flow should be still
present, albeit smaller in magnitude (⇠ v4). An exam-
ple of such a correlator, would be hcos(2�

↵

+ 2�
�

� 4 4i,
where  4 is the fourth harmonic event plane. The value
of the background due to flow could be estimated by
rescaling the correlator Eq. 9. Such measurements will
require good statistics, and strong fourth harmonic flow.
Again, the ESE can be very helpful to vary the e↵ects
related to flow.
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subevent.

The results in Fig. 1 demonstrate, that depending on
q2,a one can select events with average flow values varying
more than a factor of two. How well one can “resolve” the
flow fluctuations depends on the number of particles used
to calculate the flow vector as well as, though weakly, on
flow magnitude itself. We find that for centrality 20–25%,
the width of the v2 distribution for a fixed q2,a value is
about factor of 1.5 smaller than that for unbiased event
sample (changing from 0.031 to 0.022); it decreases for
about 20% if one double the size of the subevent (double
the multiplicity) used for q2 determination.

Let us demostrate now how in practice one can obtain
an information about the v

n

distributions, correspond-
ing to di↵erent cuts on the q

n,a

values, from the fits to
the q

n,b

-distributions. Figure 2 shows distribution in q

n,b

(subevent-b) for three di↵erent cuts on q

n,a

, separately
for the second and third harmonic flow. All q

n,b

distribu-
tions in Fig. 2 are fit to the BG functional form to extract
the corresponding mean flow values and the correspond-
ing width (see, e.g. [1]). It is remarkable that the fits
are very good not only for the unbiased q-distributions
but also to the ones corresponding to the low flow and
high flow “engineered events” (corresponding to the 5%
lowest and 5% highest q

n,a

events). Using the extracted
parameters we plot the corresponding v

n

distributions in
Fig. 3 (shown by dashed lines) and compare to the actual
(“true”) v

n

distributions, which is known in this Monte-
Carlo simulation (shown as a histogram). One finds an
excellent agreement between the two indicating that the
v

n

distributions in the “shape engineered” events are very
close to the BG form.

Nonflow e↵ects. The ESE approach described above is
based on using two subevents. In this case possible non-
flow e↵ects can be separated in two major categories
(a) when nonflow e↵ects are present within each of the
subevents, but there is no nonflow correlations between
subevents “a” and “b”, and (b) when nonflow correla-
tions are present between, as well as within, subevents.
As we show below one should try to minimize the nonflow
correlations between the two subevents which are used for
ESE selection and physical analisys, respectively. A prac-
tical solution to that might be to use subevents which are
separated by a significant (pseudo)rapidity gap.

The case (a) does present a certain challenges to the
analysis, but no more than the one in the conventional
flow analysis. Once the event selection is done with q

n,a

cuts, the flow in the selected events can be estimated
using particles in subevent “b” with standard methods
including many-particle cumulant analysis. The case (b)
is significantly more complicated. Below we only discuss
possible biases, without trying to resolve the problem.

We simulate nonflow e↵ect by assuming that half of all
particles in the entire event are produced in pairs with
both particle in a pair emitted with the same azimuthal
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FIG. 2. (color online) q2,b and q3,b distributions in the event
samples selected by di↵erent cuts on the corresponding qn,a-
vector magnitude indicated in the plot. The lines show the
BG fit to the distribution.

angle. Each particle is assigned randomly to one of the
two subevents. In this case the nonflow parameter � =
1/(2M), where M is the (full) event multiplicity, which
roughly corresponds to the nonflow estimates in real LHC
events for particles at midrapidity |⌘| < 0.8.

Figure 4 presents the results for flow calculation in
subevent “a” using 2- and 4-particle cumulant methods
as function of q2,b. The expectations based on simulated
flow are also shown. One observes a significant bias due
to nonflow, leading to overestimate the flow values in high
flow selected events and underestimate in the low flow se-
lected events. This trend is due to positive character of
the nonflow correlations. The corresponding bias in cor-
responding v distributions is shown in Fig. 5. Note that
even though the bias for mean values of flow is somewhat
modest, at large values of v

n

the actual distribution could
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subevent.

The results in Fig. 1 demonstrate, that depending on
q2,a one can select events with average flow values varying
more than a factor of two. How well one can “resolve” the
flow fluctuations depends on the number of particles used
to calculate the flow vector as well as, though weakly, on
flow magnitude itself. We find that for centrality 20–25%,
the width of the v2 distribution for a fixed q2,a value is
about factor of 1.5 smaller than that for unbiased event
sample (changing from 0.031 to 0.022); it decreases for
about 20% if one double the size of the subevent (double
the multiplicity) used for q2 determination.

Let us demostrate now how in practice one can obtain
an information about the v

n

distributions, correspond-
ing to di↵erent cuts on the q

n,a

values, from the fits to
the q

n,b

-distributions. Figure 2 shows distribution in q

n,b

(subevent-b) for three di↵erent cuts on q

n,a

, separately
for the second and third harmonic flow. All q

n,b

distribu-
tions in Fig. 2 are fit to the BG functional form to extract
the corresponding mean flow values and the correspond-
ing width (see, e.g. [1]). It is remarkable that the fits
are very good not only for the unbiased q-distributions
but also to the ones corresponding to the low flow and
high flow “engineered events” (corresponding to the 5%
lowest and 5% highest q

n,a

events). Using the extracted
parameters we plot the corresponding v

n

distributions in
Fig. 3 (shown by dashed lines) and compare to the actual
(“true”) v

n

distributions, which is known in this Monte-
Carlo simulation (shown as a histogram). One finds an
excellent agreement between the two indicating that the
v

n

distributions in the “shape engineered” events are very
close to the BG form.

Nonflow e↵ects. The ESE approach described above is
based on using two subevents. In this case possible non-
flow e↵ects can be separated in two major categories
(a) when nonflow e↵ects are present within each of the
subevents, but there is no nonflow correlations between
subevents “a” and “b”, and (b) when nonflow correla-
tions are present between, as well as within, subevents.
As we show below one should try to minimize the nonflow
correlations between the two subevents which are used for
ESE selection and physical analisys, respectively. A prac-
tical solution to that might be to use subevents which are
separated by a significant (pseudo)rapidity gap.

The case (a) does present a certain challenges to the
analysis, but no more than the one in the conventional
flow analysis. Once the event selection is done with q

n,a

cuts, the flow in the selected events can be estimated
using particles in subevent “b” with standard methods
including many-particle cumulant analysis. The case (b)
is significantly more complicated. Below we only discuss
possible biases, without trying to resolve the problem.

We simulate nonflow e↵ect by assuming that half of all
particles in the entire event are produced in pairs with
both particle in a pair emitted with the same azimuthal

2,b
q
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FIG. 2. (color online) q2,b and q3,b distributions in the event
samples selected by di↵erent cuts on the corresponding qn,a-
vector magnitude indicated in the plot. The lines show the
BG fit to the distribution.

angle. Each particle is assigned randomly to one of the
two subevents. In this case the nonflow parameter � =
1/(2M), where M is the (full) event multiplicity, which
roughly corresponds to the nonflow estimates in real LHC
events for particles at midrapidity |⌘| < 0.8.

Figure 4 presents the results for flow calculation in
subevent “a” using 2- and 4-particle cumulant methods
as function of q2,b. The expectations based on simulated
flow are also shown. One observes a significant bias due
to nonflow, leading to overestimate the flow values in high
flow selected events and underestimate in the low flow se-
lected events. This trend is due to positive character of
the nonflow correlations. The corresponding bias in cor-
responding v distributions is shown in Fig. 5. Note that
even though the bias for mean values of flow is somewhat
modest, at large values of v

n

the actual distribution could

Select	
  events	
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  to	
  their	
  q	
  value	
  

Qn = einϕi
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∑
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  (2013)	
  394	
  

“Fix	
  system	
  
size	
  and	
  vary	
  
ellipKcity”	
  



Event-­‐shape	
  engineering	
  

Michael	
  Weber	
  (CERN)	
  -­‐	
  WPCF	
  2014	
  -­‐	
  25.08.2014	
   10	
  

•Study correlations between vn’s using two-
particle correlations with |Δη| > 2
– Plot correlation of  (e.g.) v2 and v2, v3, v4, v5  values 
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symmetry planes over a large range in pT.!
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! However, recent hydrodynamic simulations show pT dependent flow 
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!  rn < 1 observed in hydrodynamic calculations!
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collec*vity	
  in	
  
hydrodynamic	
  
models	
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“Ridge”	
  in	
  p-­‐Pb	
  collisions	
  The tale of three ridges…. 

!  Manifestation of QCD in different high density systems  

!  But is there an effective mechanism that rules them all? Is it initial 
state effect, final state effect or both? 

!  What is its detailed pT, η, and centrality dependence? How these 
dependences compare between different systems? 

5 

p+p ridge Pb+Pb ridge p+Pb ridge 
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Final	
  state	
  	
  
(Hydrodynamic	
  models)?	
  

IniKal	
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(Color	
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Described	
  by	
  Hydrodynamic	
  models	
  
àCollecKvity	
  in	
  small	
  systems?	
  

PRL	
  111,	
  (2013)	
  172303	
  	
  
PRL	
  112,	
  (2014)	
  232301	
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•  Measured	
  correlaKons	
  in	
  p-­‐Pb	
  between	
  few	
  (e.g.	
  2)	
  or	
  more	
  parKcles	
  ⇒	
  
collecKvity	
  in	
  p-­‐Pb?	
  

•  QuanKtaKve	
  comparison	
  between	
  p-­‐Pb	
  and	
  Pb-­‐Pb	
  at	
  the	
  same	
  mulKplicity	
  

•  Origin	
  of	
  odd	
  harmonics	
  in	
  p-­‐Pb	
  similar	
  as	
  in	
  Pb-­‐Pb?	
  

arXiv:1406.2474	
  [nucl-­‐ex]	
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•  Measured	
  correlaKons	
  in	
  p-­‐Pb	
  between	
  few	
  (e.g.	
  2)	
  or	
  more	
  parKcles	
  ⇒	
  
collecKvity	
  in	
  p-­‐Pb?	
  

•  QuanKtaKve	
  comparison	
  between	
  p-­‐Pb	
  and	
  Pb-­‐Pb	
  at	
  the	
  same	
  mulKplicity	
  

•  Origin	
  of	
  odd	
  harmonics	
  in	
  p-­‐Pb	
  similar	
  as	
  in	
  Pb-­‐Pb?	
  

Qualita*ve	
  similar	
  picture	
  in	
  p-­‐Pb	
  and	
  Pb-­‐Pb	
  but	
  magnitude	
  significantly	
  different	
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•  CorrelaKons	
  in	
  p-­‐Pb	
  more	
  than	
  a	
  2-­‐par*cle	
  effect	
  
•  But	
  difference	
  in	
  strength	
  of	
  v2	
  between	
  p-­‐Pb	
  and	
  Pb-­‐Pb	
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•  v3	
  is	
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  both	
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  by	
  fluctuaKons?	
  	
  

Phys.	
  LeB.	
  B	
  724,	
  (2013)	
  213	
  
arXiv:1406.2474	
  [nucl-­‐ex]	
  

| < 1)
lab

η(|chN
10 210 310

| 
>

 1
.4

}
η

∆
{2

, 
|

3
v

0

0.01

0.02

0.03

0.04

 = 5.02 TeVNNsp-Pb 

 = 2.76 TeVNNsPb-Pb 

c < 3.0 GeV/
T

p0.2 < 

ALICE

ALI−PUB−85368



•  v2	
  depends	
  on	
  eta	
  (parKcle	
  density	
  dependence)	
  
•  Can	
  this	
  disKnguish	
  between	
  CGC	
  and	
  Hydro?	
  

η	
  dependence	
  of	
  ridge	
  in	
  p-­‐Pb	
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In pPb, η-dependence of v2 
• In pPb collisions, v2 depends on η  
 More v2 with higher particle densities  
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•  At	
  high	
  mulKplicity,	
  even	
  at	
  high	
  pT:	
  v2	
  >	
  0	
  
•  In	
  Pb-­‐Pb	
  this	
  addressed	
  to	
  jet	
  medium	
  interacKons	
  (RpPb	
  for	
  

charged	
  hadrons	
  in	
  this	
  pT	
  range	
  found	
  to	
  be	
  one)	
  

ATLAS-­‐CONF-­‐2014-­‐021	
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Motivation 

4 

!  In pp at 7 TeV, long-range ridge 
correlation observed 

!  Origin unclear 
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Origin	
  unclear	
  
(lacking	
  detailed,	
  systemaKc	
  study	
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  “ridge	
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  p-­‐Pb).	
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More	
  surprises	
  to	
  come?	
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Flow	
  methods	
  
•  Event	
  plane	
  method:	
  

•  Q	
  vector:	
  

•  Cumulant	
  method:	
  

•  2-­‐parKcle	
  correlaKons:	
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Why elliptic flow?
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M. Luzum,  

J. Phys. G: Nucl. Part. Phys. 38 (2011) 124026 

● Elliptic flow (v
2
) is sensitive to the system 

evolution

● Constrains the initial conditions, deconfined 

phase, particle production mechanisms

● Identified particle v
2
 allows for precision 

measurements 

● Adds further constraints to initial conditions, 

deconfined phase, particle production 

mechanisms

● Probes the freeze-out conditions of the system 

(temperature, radial flow, ...)

● Checks the number of constituent quarks (NCQ) 

scaling

4 

Flow cumulants and coefficients  

!  Cumulants formed from vn moments. Moments 
from multi-particle correlations (n=flow harmonic, 
<vn>m = <m>). 
 

!  Methods have different sensitivity to flow 
fluctuations and non-flow 
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