

Anisotropic flow measurements at LHC energies

Michael Weber (CERN)

Anisotropic flow

 x_{RP}

 Ψ_3

Anisotropic flow

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$$
$$v_{n} = \langle \cos(n(\varphi - \Psi_{n})) \rangle$$

Anisotropic flow

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2\mathbf{v}_{n} \cos(n(\varphi - \Psi_{n})))$$
$$\mathbf{v}_{n} = \langle \cos(n(\varphi - \Psi_{n})) \rangle$$

How to measure

Two- and multi-particle azimuthal correlations subject to:

- Non flow: $\langle \cos[n(\phi_i \phi_j)] \rangle = \langle v_n^2 \rangle + \delta_n$.
- Flow fluctuations: $\sigma_{vn}^2 = \langle v_n^2 \rangle \langle v_n \rangle^2$.

How to measure

Two- and multi-particle azimuthal correlations subject to:

- Non flow: $\langle \cos[n(\phi_i \phi_j)] \rangle = \langle v_n^2 \rangle + \delta_n$.
- Flow fluctuations: $\sigma_{vn}^2 = \langle v_n^2 \rangle \langle v_n \rangle^2$.

Different sensitivity of different methods:

- Two-particle methods (v₂{2PC},v₂{2},v₂{SP})
 - Sensitive to non-flow and flow fluctuations (can be suppressed by rapidity gap)
- Event plane method (v₂{EP})
 - Non-trivial biases in presence of flow fluctuations
- Higher order cumulants (v₂{4,6,8}) and Lee-Yang-Zero (v₂{LYZ}) methods
 - Suppress non-flow and flow fluctuations

Three systems studied at LHC

... and three "ridges" found

in high multiplicity events

... and three "ridges" found

in high multiplicity events

Sizeable 2nd order coefficient:

- \rightarrow Collectivity from large to even in smallest systems?
- \rightarrow Contribution of non-flow and fluctuations?

Flow event-by-event

Measure event-by-event:

- Event planes
- Flow coefficients
- And their correlations

Measure event-by-event:

- Event planes
- Flow coefficients
- And their correlations

Event shape engineering:

 Select events with different elliptic flow

Event-plane correlations

- Measure event-by-event event plane angles (with the ATLAS Forward Calorimeter): $\langle \cos k(\Phi_n \Phi_m) \rangle$
- Significant positive correlation
- Centrality dependence different from Glauber model

- Measure event-by-event event plane angles (with the ATLAS Forward Calorimeter): $\langle \cos k(\Phi_n \Phi_m) \rangle$
- Significant positive correlation
- **Good agreement to AMPT** (includes the final-state collective dynamics)

arXiv:1403.0489 [hep-ex]

Select events according to their q value

Study correlations between flow coefficients

 $Q_n = \sum_{i=1}^{M} e^{in\varphi_i}$

Select events according to their q value

 $Q_n = \sum_{i=1}^M e^{in\varphi_i}$

Study correlations between flow coefficients **experimentally**

Select events according to their q value

Study correlations between radial and elliptic flow

$$Q_n = \sum_{i=1}^M e^{in\varphi_i}$$

Correlation between flow coefficients:

• Non monotonic variation

Select q₂ in forward direction (FCAL)

Linear correlation between $v_{\rm 2}$ for low and high $p_{\rm T}$

Anti correlation between v3 and v2 (for non-central collisions)

Select q₂ in forward direction (FCAL)

Linear correlation between v_2 for low and high p_T

Anti correlation between v3 and v2 (for non-central collisions) → mostly initial geometry effect

Flow fluctuations

 p_{T} dependent flow angle and magnitude fluctuations?

Flow fluctuations

p_{T} dependent flow angle and magnitude fluctuations?

 $r_n < 1$ observed in hydro calculations \rightarrow indication for flow fluctuations

- Large breaking in central collisions
- Qualitatively reproduced by hydro calculations
- CMS and ALICE data in agreement

CMS,

- Large breaking in central collisions
- Qualitatively reproduced by hydro calculations
- CMS and ALICE data in agreement
- What is the contribution from non-flow?

Michael Weber (CERN) - WPCF 2014 - 25.08.2014

CMS-HIN-14-012

13

CMS

- Large breaking in central collisions
- Qualitatively reproduced by hydro calculations
- CMS and ALICE data in agreement
- What is the contribution from non-flow?

Damir DEVETAK Thu, 11:45h

CMS,

Michael Weber (CERN) - WPCF 2014 - 25.08.2014

CMS-HIN-14-012

Collectivity in Pb-Pb

ALI-PUB-82892

arXiv:1405.4632 [nucl-ex]

Collectivity in Pb-Pb

ALI-PUB-82892

arXiv:1405.4632 [nucl-ex]

"Ridge" in p-Pb collisions

p+Pb ridge

Phys. Rev. D 87, (2013) 094034 Phys. Lett. B 718, (2013) 1557

"Ridge" in p-Pb collisions

Phys. Lett. B 726 (2013), 164 CMS-HIN-14-002

Michael Weber (CERN) - WPCF 2014 - 25.08.2014

2.0

Described by Hydrodynamic models →Collectivity in small systems?

 Measured correlations in p-Pb between few (e.g. 2) or more particles ⇒ collectivity in p-Pb?

- Quantitative comparison between p-Pb and Pb-Pb at the same multiplicity
- Origin of odd harmonics in p-Pb similar as in Pb-Pb?

 Measured correlations in p-Pb between few (e.g. 2) or more particles ⇒ collectivity in p-Pb?

- Quantitative comparison between p-Pb and Pb-Pb at the same multiplicity
- Origin of odd harmonics in p-Pb similar as in Pb-Pb?

Qualitative similar picture in p-Pb and Pb-Pb but magnitude significantly different

- Correlations in p-Pb more than a 2-particle effect
- But **difference in strength** of v₂ between p-Pb and Pb-Pb

CMS

- Correlations in p-Pb more than a 2-particle effect
- But **difference in strength** of v₂ between p-Pb and Pb-Pb

Shengquan TUO Fri, 14:35h

Higher orders

- **v**₃ is similar for both systems at same multiplicity
- Driven by fluctuations?

Phys. Lett. B 724, (2013) 213 arXiv:1406.2474 [nucl-ex]

• Can this distinguish between CGC and Hydro?

What about heavy flavours?

Correlations with heavy flavour particles:

- Trigger particles: heavy flavour (c,b) decay electron, 1.0-2.0 GeV/c
- Associated particle: charged hadrons, 0.5-2.0 GeV/c

What about heavy flavours?

Correlations with heavy flavour particles:

- Trigger particles: heavy flavour (c,b) decay electron, 1.0-2.0 GeV/c
- Associated particle: charged hadrons, 0.5-2.0 GeV/c

Subtraction:

- Double-ridge also in HF correlations
- Mechanism affects also HF particles

What about heavy flavours?

Correlations with heavy flavour particles:

- Trigger particles: heavy flavour (c,b) decay electron, 1.0-2.0 GeV/c
- Associated particle: charged hadrons, 0.5-2.0 GeV/c

Subtraction:

- Double-ridge also in HF correlations
- Mechanism affects also HF particles

Denise GODOY Thu, 15:05h

- At high multiplicity, even at high $p_T: v_2 > 0$
- In Pb-Pb this addressed to jet medium interactions (R_{pPb} for charged hadrons in this p_T range found to be one)

Long range correlations also in pp collisions at high multiplicities observed

CMS

Long range correlations also in pp collisions at high multiplicities observed

CMS

High multiplicity pp collisions

 η dependence ?

PID dependence?

Origin unclear *

(lacking detailed, systematic study of "ridge properties", e.g. similar to what was done in p-Pb).

Summary

Event-by-event fluctuations and correlations

Collectivity in small systems

Outlook

More surprises to come?

Backup

Flow methods

• Event plane method:

$$v_n = \langle \cos(n(\varphi - \Psi_{P,n})) \rangle$$

- Q vector: $Q_n = \sum_{i=1}^{M} e^{in\varphi_i} \xrightarrow{\text{e.g.}} \langle 2 \rangle = \frac{|Q_n|^2 - M}{M(M-1)}$
- Cumulant method:

• 2-particle correlations:

$$\frac{1}{N_{trig}}\frac{dN_{assoc}(\Delta\varphi)}{d\Delta\varphi} = a_0 + \sum_{n=1}^{\infty} 2a_n \cos(n\Delta\varphi)$$