

Orientation Resolution in Uranium-Uranium Collisions

Andy Goldschmidt, Ulrich Heinz

The Ohio State University

Definitions for desired collision configurations

Motivation

Selection of tip-tip and body-body collision configurations opens up interesting features in the RHIC uranium data.

- Body-body collisions can be used to study the azimuthal behavior of the path length dependence in jet quenching.
- Tip-tip collisions provide the highest density collisions systems.
- For more, see papers by Heinz and Kuhlman: PRL 94 (2005) 132301
 PRC 72 (2005) 037901

Introduction

1. Initial condition model

 We use a two parameter MC-Glauber model with fluctuations to study deformed Uranium nuclei

2. Selecting collision orientation

- We discuss the experimental controls available for selecting orientations
- We address a model derived "knee" structure in the centrality dependent ellipticity

3. Zero degree calorimeters

- We use the model analogue of ZDCs to select on fully overlapping collisions
- We construct an explicit definition for tip-tip and body-body collisions to study the configuration selection efficiency
- We use forward and backward ZDC correlations to remove noise in tip-tip selection generated by asymmetric ZDC signals

Introduction

1. Initial condition model

 We use a two parameter MC-Glauber model with fluctuations to study deformed Uranium nuclei

2. Selecting collision orientation

- We discuss the experimental controls available for selecting orientations
- We address a model derived "knee" structure in the centrality dependent ellipticity

3. Zero degree calorimeters

- We use the model analogue of ZDCs to select on fully overlapping collisions
- We construct an explicit definition for tip-tip and body-body collisions to study the configuration selection efficiency
- We use forward and backward ZDC correlations to remove noise in tip-tip selection generated by asymmetric ZDC signals

Introduction

1. Initial condition model

 We use a two parameter MC-Glauber model with fluctuations to study deformed Uranium nuclei

2. Selecting collision orientation

- We discuss the experimental controls available for selecting orientations
- We address a model derived "knee" structure in the centrality dependent ellipticity

3. Zero degree calorimeters

- We use the model analogue of ZDCs to select on fully overlapping collisions
- We construct an explicit definition for tip-tip and body-body collisions to study the configuration selection efficiency
- We use forward and backward ZDC correlations to remove noise in tip-tip selection generated by asymmetric ZDC signals

Initial condition model

Deformed Woods Saxon Potential

Uranium has a prolate shape given according to the deformed Woods-Saxon potential

$$\rho(r,\theta) = \frac{\rho_0}{1 + e^{(r-R[1+\beta_2 Y_2^0(\theta)+\beta_4 Y_4^0(\theta)])/d}}$$

$$\beta_2 = 0.28 \qquad d = 0.44$$

$$\beta_4 = 0.093 \qquad R = 6.86$$

$$\rho_0 = 0.166$$

Monte Carlo Glauber (1/2)

The two-component Monte Carlo Glauber model is used to determine the entropy production from each collision event

$$\frac{dS}{dy} = \frac{(1-\alpha)N_p}{2} + \alpha N_b \qquad \alpha = 0.12$$

MC-Glauber is motivated by an observed nonlinear dependence of multiplicity on N_p in collisions between spherical nuclei.

Monte Carlo Glauber (2/2)

Binary collisions N_b allow for events with the same number of participants N_p to contribute very different initial integrated entropy densities.

Eccentricities

The shape of the energy distribution e(x,y) in the transverse plane can be described by r^2 -weighted eccentricity coefficients

$$\varepsilon_n e^{in\Phi_n} = -\frac{\int dx dy r^2 e^{in\varphi} e(x,y)}{\int dx dy r^2 e(x,y)}$$

Multiplicity Fluctuations

We implement multiplicity fluctuations as a weight at each nucleon using a Γ distribution

$$\Gamma(u,\kappa) = \frac{u^{\kappa-1}\kappa^{\kappa}e^{-\kappa u}}{\Gamma(\kappa)}, u = \frac{e_{max}}{\langle e_{max} \rangle} \in [0,\infty)$$

We use $1/\kappa = 0.9175$ for the scale parameter of this distribution which has a variance of $\sigma^2 = 1/\kappa$ and average $\langle u \rangle = 1$.

Selecting collision orientations

Experimental observables

Experiment ↔ Initial Condition

$$v_2 \leftrightarrow \varepsilon_2$$
 $dN/dy \leftrightarrow dS/dy$

The experimental elliptic flow v_2 and integrated particle distribution dN/dy are used to select orientations—these map linearly to their initial condition analogues ε_2 and dS/dy.

Definitions for desired collision configurations using experimental observables

Tip-tip events have small ε_2 and large N_b

Body-body events have large \mathcal{E}_2 and small N_b

A model dependent "knee" structure

Within the two parameters mixed model, a preferential selection of tip-tip events at high dS/dy results in a "knee" structure in the centrality dependent ellipticity. The knee structure is not seen in STAR results.

"Knee" structure with multiplicity fluctuations

Adding multiplicity fluctuations shifts the "knee" to larger multiplicity and slightly diminishes the effect.

"Knee" structure with hydrodynamics

The "knee" is seen in ε_2 and weakly in ε_4 . Event-by-event viscous hydrodynamics are run for a subset of the data for direct comparison to experiment. We find the "knee" is preserved in the final elliptic flow v_2 .

Zero Degree Calorimeters:

Tightening the collision geometry by using information about spectators

Zero Degree Calorimeters

$$v_2 \leftrightarrow \varepsilon_2$$
 $dN/dy \leftrightarrow dS/dy$
 $%2DC \leftrightarrow %0N_S$

ZDCs catch neutrons that pass through a collision without participating, giving an idea of the collision overlap—the model analogue is the number of nucleon spectators $N_s = 2A - N_p$.

We use MC-Glauber initial conditions with multiplicity fluctuations and select on 1% of events that have the smallest N_s .

Definitions for desired collision configurations using Euler angles

Tip-tip

$$\sqrt{\frac{\cos^2(\theta_1) + \cos^2(\theta_2)}{2}} > \frac{\sqrt{3}}{2}$$

Body-body

$$\sqrt{\frac{\cos^{2}(\theta_{1}) + \cos^{2}(\theta_{2})}{2}} < \frac{1}{2}$$

$$|\varphi_{1} - \varphi_{2}| < \pi/10$$

Multiplicity distributions for different collision configurations for 1% ZDC selected events

Lower dS/dy have more body-body. Higher dS/dy have more tip-tip.

Model differences in elliptic flow vs multiplicity

The nonlinear dependence of N_p on N_b in the 2-component Glauber model results in a steeper slope than in the STAR data and in the IP-Glasma model.

Ellipticity distributions for different collision configurations for 1% ZDC selected events

Lower ε_2 have more tip-tip. Higher ε_2 have more body-body.

Correlating ZDCs for additional constraints on collision geometry (1/2)

Events with symmetric ZDC signature are better described by the tip-tip collision criteria than asymmetric events (spectator regions are shaded).

Symmetric ZDC signature contributes more tip-tip

Asymmetric ZDC signature contribute less tip-tip

We define $\Delta N_s = |N_{s,1} - N_{s,2}|$ and select events from the bottom 10% of ΔN_s to diminish the contribution of asymmetric collisions and increase tiptip selection efficiency.

Correlating ZDCs for additional constraints on collision geometry (2/2)

Selection efficiency of tip-tip collisions increases by removing asymmetric noise.

Conclusions, future study

Conclusions

The MC-Glauber "knee" structure in the multiplicity dependent ellipticity is preserved after hydrodynamic evolution. It is weakened by multiplicity fluctuations.

For events cut on 1% ZDC, selection efficiency for tip-tip by cutting additionally on large dS/dy is ~50%, for body-body by cutting on low dS/dy it is never above 20%. These numbers are model dependent and correlate with the "knee" structure.

Selection efficiency of ε_2 is ~25% for tip-tip and ~40% for body-body. Tip-tip results can be improved to ~35% using ZDC correlation.

Future study

In the process of running a hydrodynamic analysis of collision events that includes multiplicity fluctuations in the initial conditions.

Will use correlated forward and backward ZDC to study tip-body collisions.

Conclusions, future study

Conclusions

The MC-Glauber "knee" structure in the multiplicity dependent ellipticity is preserved after hydrodynamic evolution. It is weakened by multiplicity fluctuations.

For events cut on 1% ZDC, selection efficiency for tip-tip by cutting additionally on large dS/dy is ~50%, for body-body by cutting on low dS/dy it is never above 20%. These numbers are model dependent and correlate with the "knee" structure.

Selection efficiency of ε_2 is ~25% for tip-tip and ~40% for body-body. Tip-tip results can be improved to ~35% using ZDC correlation.

Future study

In the process of running a hydrodynamic analysis of collision events that includes multiplicity fluctuations in the initial conditions.

Will use correlated forward and backward ZDC to study tip-body collisions.