

X Workshop on Particle Correlation and Femtoscopy 25-29 August, 2014

Higher flow harmonics and ridge effect in PbPb collisions with HYDJET++ model

Gyulnara Eyyubova, *Czech Technical University in Prague & SINP MSU, Russia*

V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev *SINP MSU*

Outline

- HYDJET++ model (hydro + jet)
- Description of elliptic flow $\mathsf{v}_{\scriptscriptstyle 2}^{}$
- Triangular flow v_{s} and higher flow harmonics
- **•** Dihadron angular correlations
- **Conclusions**

HYDJET++ model

I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp. Phys. Comm. 180 (2009) 779

The model combines hard and soft physics.

1. Soft part

Hadronization from freez-out surface with distribution function:

$$
f_i^{\text{eq}}(p^{*0}; T^{\text{ch}}, \mu_i, \gamma_s) = \frac{g_i}{\gamma_s^{-n_i^s} \exp\left([p^{*0} - \mu_i]/T^{\text{ch}}\right) \pm 1}
$$

p_{*º} is the hadron energy in the fluid element rest frame, $\gamma_{\text{s}}^{\text{}}$ is strangeness suppression factor

2. Hard part

- ◆ Parton collisional loss
- \triangle Radiative loss

HYDJET++ model

The contribution of soft and hard components into total multiplicity depends on a model parameter: minimal $\bm{{\mathsf{p}}}_{{}_{\mathsf{T}}}$ of hard process.

The points are ALICE data, histogram dashed is hard component, dotted is soft component of HYDJET++.

HYDJET++ model: elliptic flow

$$
\tfrac{dN}{d\varphi} = \tfrac{1}{2\pi} (1 + \sum 2 \mathsf{v}_n(p_t) \cos (n[\varphi - \Psi_n]))
$$

Soft part:

• Space modulation of freeze-out surface;

• Modulation of liquid velocities on the surface

$$
\epsilon(b) = \frac{R_y^2 - R_x^2}{R_y^2 + R_x^2},
$$

R(b) is radius of the freeze-out surface

$$
v_2 \propto \frac{2(\delta - \epsilon)}{(1 - \delta^2)(1 - \epsilon^2)}
$$

Space asymmetry: Space asymmetry: Momentum asymmetry:

$$
\tan \varphi_{*} = \sqrt{\frac{1 - \delta(b)}{1 + \delta(b)}} \tan \varphi.
$$

 φ_{u} : azimuthal angle of liquid velocity vector φ : space azimuthal angle

Parameters $\varepsilon(b_0)$, $\delta(b_0)$ are tuned to describe experimental data.

Hard part:

Parton energy loss depends on the path length in the medium: v_2 (jet) $\neq 0$

HYDJET++: triangular flow

Space modulation of the freeze-out surface with independent phase Ψ_3 and parameter ϵ_3 is introduced in the model:

Particle densities in the transverse plane for v_2 and $v_2 + v_3$ harmonics.

HYDJET++ model: flow

Typical flow pattern

- Even v_n appear in the model because of v_2
- Odd v_{n}^{\parallel} appear in the model because of v_{3}^{\parallel}

HYDJET++ : elliptic flow

Discrepancy in an intermediate p_{t} region.

HYDJET++ :

elliptic and quadrangular flow

In order to describe $\vee_{_4}\{\Psi_{_{4}}\}$ additional modulation of flow velocity is introduced currently, no independent $\Psi_{_{4.}}$

9

L. B ra vin a

et al., P

gys.R

ev.C 78 (2 013) 034901

HYDJET++ : triangular flow

10 The closed circles: ATLAS data (Phys.Rev. C 86, (2012) 014907), <code>v</code> {EP}, PbPb collisions, 2.76 TeV, open circles: v_ո{EP} for HYDJET++, histograms: v_n(Ψ_{RP}) for HYDJET++

HYDJET++ : higher order harmonics

v 5

The closed circles: CMS data $\mathsf{v}^{}_{\mathsf{n}}\{\mathsf{EP}\}$, PbPb collisions, 2.76 TeV, open circles: v_n{EP} for HYDJET++ ; histograms: v_n(Ψ_{RP}) for HYDJET++

central collisions \rightarrow the possible presence of the additional pentagonal flow parameter

L. B ra vin a

et al., E u

r. P

hys. J

HYDJET++ : higher order harmonics

v 6

The closed circles: CMS data $\;$ v $_{\rm 6}$ {EP}, PbPb collisions, 2.76 TeV, histograms: $\mathsf{v}_6^{}(\Psi_2^{})$ for <code>HYDJET++</code> ; $\mathsf{v}_6^{}(\Psi_6^{})$ in progress

 $\bm{\mathsf{V}}_{_{6}}$ also has a contribution from $\bm{\mathsf{v}}_{_{3}}$ (only contribution from $\bm{\mathsf{v}}_{_{2}}$ is shown).

12

L. B ra vin a

et al., E u

r. P

hys. J

Two-plane correlators

Contribution from $\mathsf{v}_{_3}$ increases for more central collisions.

Behavior of the plane correlators is in line with the experimental observations.

Dihadron angular triggered correlations

Signal: correlations of a pair in the same event:

$$
S(\Delta\varphi,\Delta\eta)=\frac{1}{N_{\mathsf{trig}}}\frac{d^2N^{\mathsf{same}}}{d\Delta\varphi d\Delta\eta}
$$

Correlation function, definition 1 definition 2

Background: correlations of two particles from different events:

$$
B(\Delta\varphi,\Delta\eta)=\frac{1}{N_{\mathsf{trig}}}\frac{d^2N^{\mathsf{mixed}}}{d\Delta\varphi d\Delta\eta}
$$

Dihadron angular correlation in HYDJET++, PbPb 2.76 TeV

Dihadron angular correlation in HYDJET++, PbPb 2.76 TeV

Away-side structure is discribed well

Mid-central collisions, 30-35%

Singular particle flows are described well in this region.

More peripheral collisions, 50-60%

Coefficients $V_{\Delta 2}$ is much smaller compared to data.

HYDJET++ data comparison, momentum dependence

• At 0-5% centrality, HYDJET++ does not reproduce flow harmonics $v_n(n>2)$ very well, neither it reproduces dihadron correlations at low $p_t^{\,\,tr}$ *.*

At high $p_t^{\ t r}$ HYDJET++ describes data.

Test of factorization: $V_{\Delta n} \approx v_n^2 \{2\} (p_t^{\text{tr}})^* v_n^2 \{2\} (p_t^{\text{a}})$

- Factorization in HYDJET++ breaks due to hard component (non-flow).
- Factorization for $V_{\Lambda2}$ breaks in data at lower p_t compared to HYDJET++.

Conclusion

- **•** Flow in the model:
	- \triangleright Uncorrelated EbE reaction planes Ψ ₂ and Ψ ₃ are introduced, independent on η and p _t.
	- \triangleright Multiplicity fluctuation at the same impact parameter \rightarrow flow v_{2} and v_{3} fluctuations (no additional fluctuations due to eccentricity fluctuations)
	- \triangleright Higher flow harmonics appear from v_2 and v_3 interference in final state (at freeze-out)
- **Data on higher flow harmonics and dihadron angular correlations are described well** in mid-central collisions
- The mechanism of interference of $\mathsf{v}_{_{2}}$ and $\mathsf{v}_{_{3}}$ is not enough to describe data in central collisions

Backups

HYDJET++ : quadrangular flow

CMS data, $v_4\{2\}$ — circles, $v_4\{LYZ\}$ — squares

Correlation pattern in AA

CMS, PbPb 2.76 TeV, Eur. Phys. C 72 (2012) 10052, 3<pt^{trig}<3.5 Gev/c, 1<pt^{assoc}<1.5 GeV/c

HYDJET++, hard component

Parton collisional loss (high momentum transfer approximation)

$$
\frac{dE^{col}}{dl} = \frac{1}{4T\lambda\sigma} \int_{\mu_D}^{t_{\text{max}}} dt \frac{d\sigma}{dt} t \quad \frac{d\sigma}{dt} \cong C \frac{2\pi\alpha_s^2(t)}{t^2} \frac{E^2}{E^2 - m_p^2}, \quad \alpha_s = \frac{12\pi}{(33 - 2N_f)\ln\left(t/\Lambda_{QCD}^2\right)}
$$

t is momentum transfer, E and m_{p:} energy and mass of a hard parton, C is color factor

Radiative loss (coherent gluon radiation in Baier-Dokshitzer-Mueller-Schiff formalism) – *For massless parton*

$$
\frac{dE^{rad}}{dl} = \frac{2\alpha_s(\mu_D^2)C_R}{\pi L} \int_{\omega_{\text{min}}}^E d\omega \left[1 - y + \frac{y^2}{2}\right] \ln|\cos(\omega_1 \tau_1)| \quad \omega_1 = \sqrt{i\left(1 - y + \frac{C_R}{3}y^2\right)} \bar{\kappa} \ln\frac{16}{\bar{\kappa}} \quad \text{with} \quad \bar{\kappa} = \frac{\mu_D^2 \lambda_g}{\omega(1 - y)} \tau_1 = L/(2\lambda_g), y = \omega/E
$$

w is gluon energy

– *For heavy quark (dead cone approximation)*

$$
\frac{dE}{d\mu}\Big|_{m_q\neq 0} = \frac{1}{(1+(\beta\omega)^{3/2})^2} \frac{dE}{d\mu}\Big|_{m_q=0}, \quad \beta = \left(\frac{\lambda}{\mu_D^2}\right)^{1/3} \left(\frac{m_q}{E}\right)^{4/3}
$$

HYDJET++, hard component

Geometry of QGP

Radial profile of energy density

 $\varepsilon(r_1, r_2) \propto T_A(r_1) * T_A(r_2)$ (T_A(b) - nuclear thickness function)

Jet production vertexes distribution:

$$
\frac{dN^{\text{jet}}}{d\psi r dr}(b) = \frac{T_A(r_1) \cdot T_A(r_2)}{T_{AA}(b)}
$$

HYDJET++, hard component

Halting the rescattering if:

(a) the parton escapes the hot QGP zone, i.e. the temperature in the next point $T(\tau + 1)$, ri+1, ηi+1) becomes lower than Tc

(b) the parton loses so much of energy that its transverse momentum pT (τi+1) drops below the average transverse momentum of the "thermal" constituents of the medium.

> Three model parameters: initial QGP temperature To, QGP formation time το and number of active quark flavors in QGP Nf $(+$ minimal p_T of hard process Ptmin)

HYDJET++, soft component

N.S.Amelin, R.Lednisky, T.A.Pocheptsov, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, Phys. Rev. C 74 (2006) 064901 N.S.Amelin, R.Lednisky, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, I.C.Arsene, L.Bravina, Phys. Rev. C 77 (2008) 014903

Starting point: chemical freeze-out of fireball with the distribution functions in the fluid element rest frame

$$
f_i^{eq}(p^{*0}; T^{ch}, \mu_i, \gamma_s) = \frac{g_i}{\gamma_s^{-n_i^s} \exp\left([p^{*0} - \mu_i]/T^{ch}\right) \pm 1}
$$
\n
$$
\rho_i^{eq}(T, \mu_i) = \int_0^{\infty} d^3 \vec{p}^* f_i^{eq}(p^{0*}; T(x^*), \mu(x^*)) = 4\pi \int_0^{\infty} dp^* p^{*2} f_i^{eq}(p^{0*}; T, \mu_i)
$$
\nwhere γ_s is the same, γ_s is the same.

p^{∗0} is the hadron energy in the fluid element rest frame, $γ_薄$ is strangeness suppression factor, quantum statistics is accounted for

The mean multiplicity N_i of a hadron species *i:*

$$
N_i = \rho_i(T, \mu_i) V_{\text{eff}} \qquad P(N_i) = \exp(-\bar{N}_i) \frac{(\bar{N}_i)^{N_i}}{N_i!}
$$

HYDJET++ data comparison, Integrated yield

Integrated associated yields in the near-side jet and ridge regions around, minus constant background (ZYAM method).

