Higher Harmonics from causal hydrodynamic fluctuation

2014/8/6, ATHIC 2014, Osaka

Koichi Murase^{A,B,C}, Tetsufumi Hirano^B

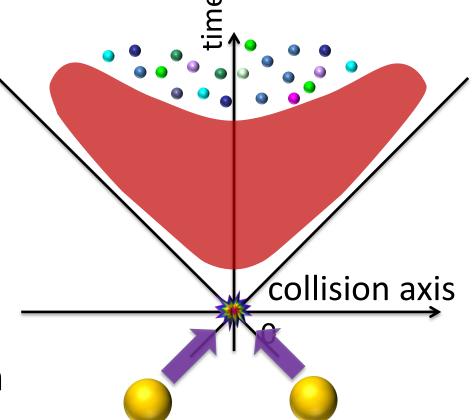
The University of Tokyo^A,

Sophia University^B,

RIKEN Nishina Center^C

Outline

- 1. Introduction: hydrodynamic fluctuation
- 2. Causal hydrodynamic fluctuation
- 3. Numerical model
- 4. Numerical results


Introduction

Fluctuations in heavy-ion collisions

Final observables

– flow harmonics v_n , etc.

Response of Matter EoS, η , ζ , τ_R , λ , ...

- Initial-state fluctuation
 - nucleon distribution
 - quantum fluctuation

Fluctuations in heavy-ion collisions

Final observables

quantum fluctuation

– flow harmonics v_n , etc. Other fluctuations + hydro fluctuation Relativistic hydrodynamics + jets/mini-jets (~QGP) + critical phenomena collision axis Initial state fluctuation nucleon distribution

Hydrodynamic fluctuation

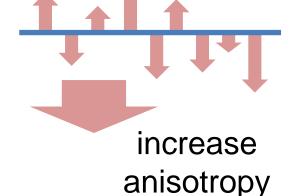
HF = Thermal fluctuation of dissipative currents

e.g.
$$\pi^{\mu\nu}=2\eta\partial^{\langle\mu}u^{\nu\rangle}+\delta\pi^{\mu\nu}$$

ensemble/event averaged

thermal fluctuation

at each spacetime x



decrease anisotropy Fluctuation-Dissipation Relation

$$\langle \delta \pi^{ij} \delta \pi^{ij} \rangle \sim 4T\eta/V$$

V: 3+1 dim. volume

HF is important in e-by-e description of HIC

Causal hydrodynamic fluctuation

Causal hydrodynamic fluctuation

In causal theory (2nd-/higher-order dissipative hydro.)

Integral form of constitutive equation (CE)

$$\Gamma = \int d^4x' G(x-x') \underline{\kappa F(x')}_{\text{thermodynamic}} + \underline{\delta \Gamma}_{\text{force}}$$

<u>Differential form of CE</u>

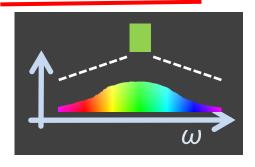
$$\mathscr{L}\Gamma = \kappa F + \underline{\xi}$$

Linear operator operating on Γ

noise $\xi = \mathscr{L} \delta \Gamma$

e.g.
$$\mathcal{L} = 1 + \tau_{\Pi} D$$

$$\tau_{\Pi} D\Pi + \Pi = -\zeta \theta,$$


FDR of noise in causal theory

δΓ: Noise in Integral form of CE

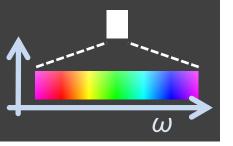
KM, T. Hirano [arXiv:1304.3243]

$$\langle \delta \Gamma(x) \delta \Gamma(0) \rangle = \kappa T[G(x) + G(-x)]$$

II FDR

δΓ: always colored noise

$\xi = L\delta\Gamma$: Noise in Differential form of CE


G: relaxing

G: retarded

G: causal

$$\langle \xi(x)\xi(x')\rangle = 2T\kappa\delta^{(4)}(x-x')$$

ξ: always white noise

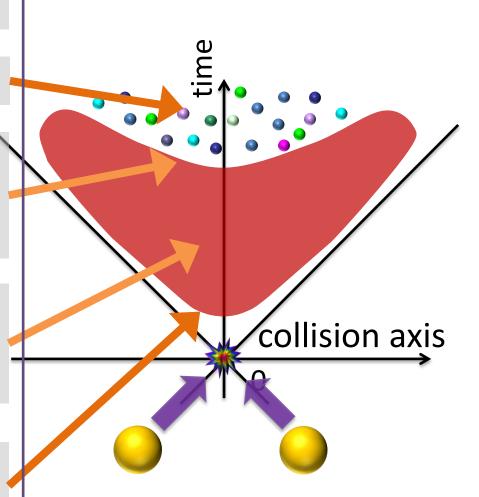
Numerical simulation: Model

An Integrated Dynamical Model

5. **Analysis** of hadron distribution

4. Hadron cascade (JAM)

3. **Particlization** at $T_{sw} = 155$ MeV Cooper-Frye formula

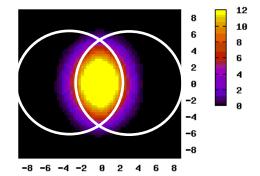

Note: no viscous distortion

2. (3+1)-dim. Relativistic Fluctuating Hydrodynamics

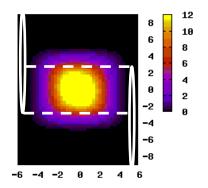
EoS: lattice QCD&HRG, $\eta/s = 1/4\pi$

1. Initial condition

Smoothed MC-KLN


Updates of T. Hirano, P. Huovinen, KM, Y. Nara, PPNP **70**, 108 (2012) [arXiv:1204.5814]

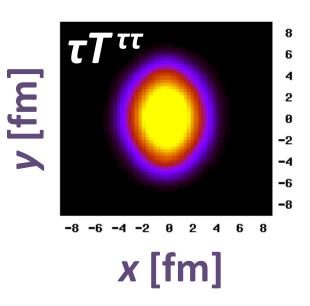
Setup: Initial state & Hydro.

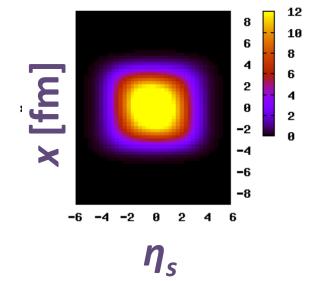

Initial condition

Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$ b = 6.45 fm (\sim Centrality 20%) Smoothed MC-KLN (CGC)

x-y plane

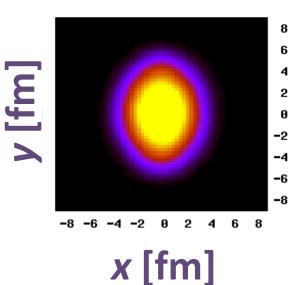
 η_s -x plane

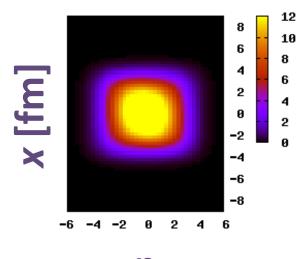



- (3+1)-dim Relativistic Fluctuating Hydrodynamics:
 with a new conservative scheme
 - a. without fluctuation \rightarrow 1 hydro + 10k cascades
 - **b.** with fluctuation \rightarrow 10k hydro&cascades

Hydrodynamic simulation

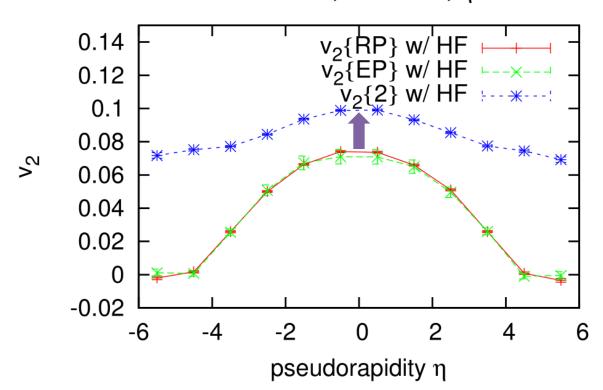
without HF


conventional 2nd-order viscous hydro



with HF

2nd-order fluctuating hydro

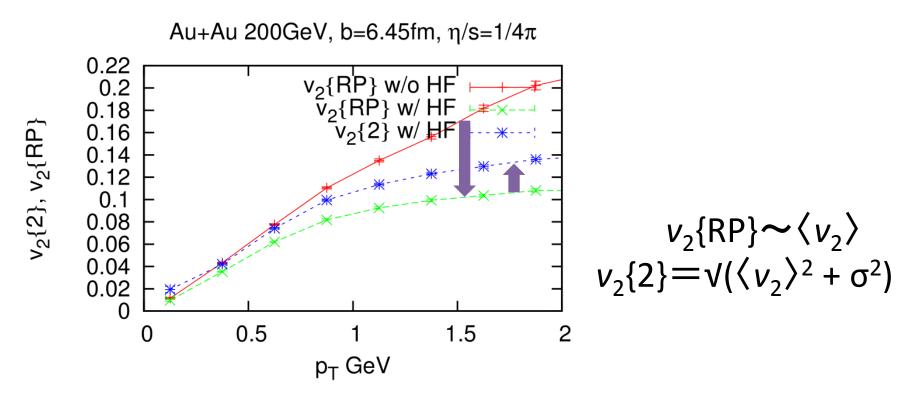


 $\boldsymbol{\eta}_s$

Numerical simulation: Results

Elliptic flow vs n

Au+Au 200GeV, b=6.45fm, $\eta/s=1/4\pi$

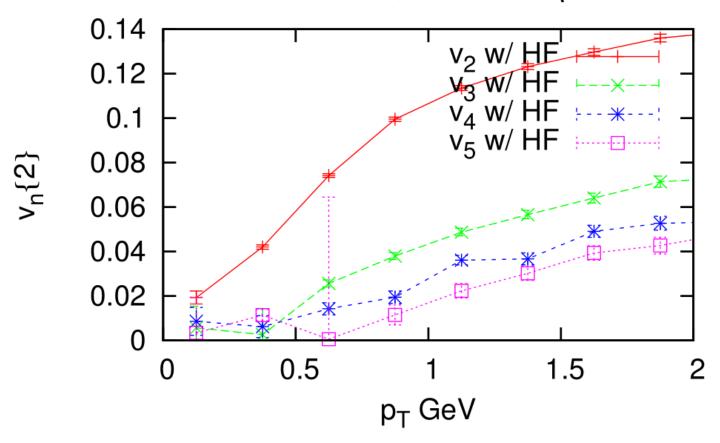


EP: η -sub 2.05< $|\eta|$ <3.2

$$v_2\{RP\} \sim \langle v_2 \rangle$$

 $v_2\{2\} = v(\langle v_2 \rangle^2 + \sigma^2)$

- $v_2\{RP\} = v_2\{EP\}$: **EP**₂ (defined in η -sub) **not changed by HF** \leftarrow HF in forward/backward are independent
- Considerable amount of v_n fluctuation σ_n


Elliptic flow vs p_T

- Note: no viscous correction in Cooper-Frye formula
- Change of $v_2\{RP\} \leftarrow$ non-linear hydro. evolution?
- Suppression in higher p_T

Higher harmonic flow vs p_T

Au+Au 200GeV, b=6.45fm, $\eta/s=1/4\pi$

v_{odd}{2}:
 finite value even without initial-state fluctuation

Summary

- Hydrodynamic fluctuation, thermal fluctuation of hydrodynamics, has effects on flow harmonics
 - event planes are not changed by HF
 - —finite v_{odd} even without IS fluctuation
 - decrease of v_2 in higher pt region
- Outlook
 - results with IS fluctuations (jobs are running)
 - -viscous correction in CF formula
 - compare results with experiments