

JET TOMOGRAPHY OF FLUCTUATING INITIAL CONDITIONS AND THE OPAQUENESS EVOLUTION FROM RHIC TO LHC

Jinfeng Liao Indiana University, Physics Dept. & CEEM

RIKEN BNL Research Center

Outline

- Introduction: opaqueness evolution
- Jet tomography: What we've learned from the geometry of jet quenching with RHIC+LHC data?
- Jet tomography for the smallest QGP drop
- Opaqueness evolution from "one more dimension"
- Summary & Discussions

```
X. Zhang, JL, arXiv:1311.5463,1208.6361(PRC), 1210.1245(PRC),1202.1047(PLB); D. Li, JL, M. Huang, arXiv:1401.2035 (PRD); JL, arXiv:1109.0271; JL, Shuryak, Phys.Rev.Lett. 102 (2009) 202302
```

A Color-Opaque Plasma

From Transparency to Opaqueness

To me, this is a question of fundamental interest, and one we must answer for understanding of jet-quenching & of the medium itself.

Hot off the Lattice: Crossover, but Rapid

"Rapid Up" or "Rapid Down":

pressure/energy density/entropy density/ 2-nd q-susceptibilities/ chiral condensate/Q-bar-Q free energy/...

"Peak" or "Dip":

trace anomaly/chiral susceptibility/ 4-th q-susceptibilities/ Q-bar-Q internal energy/ speed of sound//...

How about the "Perfect-ness" of Fluid?

Csernai, Kapusta, McLerran, PRL (2006)

Lacey, et al, PRL(2007)

V.S.

How can we get the answer about the T-dependence of jet-medium interaction?

Do we even have a chance to find out the answer?

Luckily, we seem to be able to:

Geometric Anisotropy of Jet Quenching

Geometric tomography(~2001): Gyulassy,Vitev,Wang,... Geometric limit of high-pt v2: Shuryak; Drees,Feng,Jia;... Till ~2008: clear discrepancy between data / any model

Differential Data Examples

J. Xu et al., arXiv:1402.2956

Where Are Jets Quenched (More Strongly)?

Taken for granted in all previous models: "waterfall" scenario.

We realized the puzzle may concern more radical questions:

Where are jets quenched (more strongly)?

Geometry is a sensitive feature: "Egg yolk" has one geometry, "Egg white" has another.

PRL 102, 202302 (2009)

PHYSICAL REVIEW LETTERS

week ending 22 MAY 2009

Angular Dependence of Jet Quenching Indicates Its Strong Enhancement near the QCD Phase Transition

Jinfeng Liao1,2,* and Edward Shuryak1,†

¹Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794, USA
²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 22 October 2008; revised manuscript received 19 February 2009; published 22 May 2009)

Layer-wise Jet Quenching

$$f_P = exp\left\{-\int_P \kappa[s(l)] s(l) l^m dl\right\}$$
$$R_{AA}(\phi) = \langle (f_P)^{n-2} \rangle_{P(\phi)}$$

scan the jet quenching geometry layer by layer in density

$$\kappa[s] = \kappa_c * \theta[s - s_a] * \theta[s_b - s]$$

Assume jet quenching occurs only in a specific density interval with constraint from overall Raa

look at v2 from that layer:

Near-Tc layers give the strongest anisotropy!

Near-Tc Enhancement (NTcE)

In the paper PRL(2009) we concluded:

"In relativistic heavy ion collisions the jets are quenched about 2--5 times stronger in the near-Tc region than the higher-T QGP phase."

NTcE as a Generic Mechanism

Near Tc Enhancement (the "volcano") generically increases the contribution to jet quenching from later stage and outer layer of the fireball, and gives more anisotropy.

- * relatively insensitive to detailed shape of "volcano"
- * works in jet quenching modelings with varied implementations (e.g. geometric models, or GLV/WHDG/CUJET, or ASW, with/without fluctuations/transverse expansions)

Francesco-Di Toro-Greco

Renk-Holopainen-Heinz-Shen

Gyulassy, Buzzatti, Bezt

Fries & students

Marquet & Renk

Jia & Wei

The RHIC+LHC Era

Beautiful jet quenching measurements from ALICE, ATLAS, CMS

NTcE: Shift to Less Opaque Medium at LHC

LHC compared with RHIC:

- * high T QGP occupies more space-time evolution
- * the near-Tc will weigh less, with "volcano" effect reduced
- -->
- * Naturally predicts a less opaque (on average) medium seen by jets (note however density doubles)
- * Anisotropy from the "volcano" and "waterfall" scenarios will become closer

Raa from RHIC to LHC

Average jet-medium coupling from RHIC to LHC: reduced by ~30% due to strong T-dependence

$$<\kappa[s(l)]>_{P} = \frac{\int_{P} \kappa[s(l)] \, s(l) \, l \, dl}{\int_{P} \, s(l) \, l \, dl}$$
 $<\kappa>_{\text{RHIC}}:<\kappa>_{\text{LHC}} \approx 1:0.72$

Zhang & JL, arXiv: 1311.5463; 1210.1245

Fluctuating Initial Condition (I.C.)

The initial condition used to be like this ...

We now know it is actually like this:

b [fm]

V2 from RHIC to LHC

RED: L^2 model+waterfall BLUE: L^2+volcano BLACK: L^3+waterfall

Zhang & JL, arXiv: 1208.6361

^{*}We do see big difference between waterfall/volcano at RHIC, and this difference becomes much smaller at LHC

^{*} RHIC + LHC data are in favor of the L^2 + Volcano scenario

Differential R aa from RHIC to LHC

$$R_{AA}(\phi) = R_{AA}[1 + 2V_2 + \dots]$$

Zhang & JL, arXiv: 1311.5463

Differential V_2 from RHIC to LHC

$$R_{AA}(\phi) = R_{AA}[1 + 2V_2 + \dots]$$

Hard Probe of Fluctuating Geometry

X.Zhang & JL, arXiv:1311.5463; 1210.1245; 1202.1047

Hard-Soft Di-Hadron Azimuthal Correlations

Both hard and soft sectors "see" and respond to the common fluctuating geometry --> correlations!

X.Zhang & JL, arXiv:1210.1245; 1202.1047

Possible Future Measurements

* Correlations between V2 and V3

* Measure high Pt anisotropy with Event-Shape-Engineering

Together these can provide stringent test of jet energy loss models as well as I.C. models.

Final State Attenuation in the Mini-Bang?

High multiplicity pPb collisions at LHC (and dAu at RHIC) have generated significant interests recently:

Are they "Mini-Bangs" creating matter with significant final state interactions?

Possible jet attenuation is an independent probe.

R_pA itself could be rather tricky!

High p_t anisotropy, particularly v_2 could be a golden signal!

"Mini-Bangs": High Multi. dAu at RHIC

High p_t anisotropy,
particularly v_2 ~ 10%
--> could be a golden signal
to tell YES or NO

"Volcano" Seen from "Different Angles"

* Horowitz & Gyulassy:

"surprising transparency" when
simply extrapolating RHIC to LHC

* Betz & Gyulassy: 10~30% reduction in "polytrope" model

* Buzzatti & Gyulassy: Strong running coupling at T --> Tc (also in Zakharov calculation)

- * Lacey et al, scaling analysis: q-hat(LHC) ~ q-hat(RHIC) despite twice the density
- * Lattice QCD: Q-bar-Q internal energy shows strong peak at Tc
- * Majumder-Muller-Wang, Dusling-Moore-Teaney: peak in q-hat/density related with dip in \eta/s?
- * Majumder: lattice attempt -->q-hat/density showing peak?

Latest Analysis from JET Collaboration

In the paper PRL(2009) we concluded:

"In relativistic heavy ion collisions the jets are quenched about 2--5 times stronger in the near-Tc region than the higher-T QGP phase."

Latest Results from State-of-Art Simulations

Renk, 1402.5798 & QM14

model	ASW	YDE 3d	YDE 2d
$NTC/\epsilon^{3/4}$	1.17	1.22	1.20

Latest Analysis from CUJET & Models

effectively: kappa_out > kappa_in

Xu, Buzzatti, Gyulassy, 1402.2956; Betz, Gyulassy, 1404.6378

NEAR-TC MATTER IS SPECIAL!

* Harmonic flows from RHIC to LHC: hydro simulations suggest a clear increase of ~40% in eta/s

At top RHIC energy, as shown in Fig. 7, the experimental data from STAR [35] and PHENIX [1] is well described when using a constant $\eta/s = 0.12$, which is about 40 % smaller than the value at LHC. A larger effective η/s

Gale, Jeon, Schenke, Tribedy, Venugopalan arXiv: 1209.6330

Also earlier analysis by Frankfurt group and OSU group

* Raa + Geometry + Evolution from RHIC to LHC: strong evidences for Near-Nc Enhancement --> predicts a less opaque medium at LHC!

 $<\kappa>_{\mathrm{RHIC}}\,:\,<\kappa>_{\mathrm{LHC}}\,pprox\,1:0.72$

X.Zhang & JL, PLB(2012), arXiv:1208.6361,1210.1245(PRC2013)

Consistent messages from independent analysis by

Horowitz&Gyulassy; Betz & Gyulassy; Lacey, et al; B. Zakharov

RHIC+LHC: E-M "See-Saw" Scenario at work ---> anticipating critical test at LHC top energy!

Going to One More Dimension

Deforming the conformal-AdS to introduce non-conformal dynamics: using graviton-dilaton system in the bulk

$$S_{G} = \frac{1}{16\pi G_{5}} \int d^{5}x \sqrt{g_{s}} e^{-2\Phi} \left(R_{s} + 4\partial_{M}\Phi \partial^{M}\Phi - V_{G}^{s}(\Phi) \right)$$

$$\Phi(z) = \mu_{G}^{2} z^{2} \tanh(\mu_{G^{2}}^{4} z^{2} / \mu_{G}^{2})$$

$$ds_{S}^{2} = e^{2A_{s}} \left(-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{i}dx^{i} \right)$$

We use the Liu-Rajagopal-Wiedemann scheme to compute q-hat

$$\hat{q} = \frac{\sqrt{2}\sqrt{\lambda}}{\pi \int_0^{z_h} dz \sqrt{g_{zz}/(g_{22}^2 g_{--})}},$$

D. Li, JL, M. Huang, arXiv:1401.2035

Results from Non-Conformal Holo-QCD

Same non-conformal, non-monotonic, non-perturbative dynamics
---> shows up in trace anomaly and in jet transport parameter
---> considerably increases jet anisotropy toward data as compared with conformal case

D. Li, JL, M. Huang, arXiv:1401.2035

Summary

- *An exciting problem: determine and understand the temperature dependence of jet-medium coupling
- * Geometry + Evolution from RHIC to LHC: strong evidences for Near-Nc Enhancement
- * RHIC + LHC together provide unique opportunities for mapping out the detailed shape of the "volcano" and for probing the transition zone between the confined world and the asymptotically free matter.

BACKUP SLIDES

Liberation of Color?

Degree of color liberation

A region around Tc with liberated degrees of freedom

but only partially liberated color-electric objects.

(Pisarski & collaborators: semi-QGP --- see Skokov's talk)

Then what are the "extra" dominant DoF here???

Let's come to this later, for the moment: sth. special Near Tc, not yet the AFM

MOST RECENT LATTICE EVIDENCE

for SU(3) pure gauge theory
Bonati & D'Elia, arXiv:1308.0302[hep-lat]

LOW SHEAR VISCOSITY OF E-M PLASMA

We first studied the plasma of a completely new kind: Coulomb-Lorentz Plasma!

Molecular Dynamics for 1000 particles with long range forces for varying E/M ratio:

pure electric; 25% magnetic charges; 50% magnetic charges

A mixture of E&M charges help explain the observed transport properties.

Near-Tc Matter: Thermodynamics

Near Tc: <u>a wide window</u> in terms of entropy density!

What is the nature of confinement transition?

Can H.I.C. help us understand the matter just about to confine?

The world is much richer than just a HRG and a Stefan-Boltzmann QGP!

Near-Tc Matter: Hydrodynamics

Near Tc Matter (between HRG and QGP) occupies <u>large space time volume</u> (~1/3) during the fireball evolution.

Teaney & Shuryak

Heinz & Song

Sensitivity to T-dependence of Energy Loss

Francesco-Di Toro-Greco (arXiv:1009.1261)

Magnetic Monopoles & E-M Duality

't Hooft-Polyakov (1974):

monopoles naturally arise as topological solutions to classical EoM in non-Abelian gauge theories;

<u>Dirac Quantization obeyed, mass & size ~ 1/g</u>

Dirac: $e^*g=1$

What happens if the gauge theory with monopoles is in strongly coupled regime?

E-M Duality: (Motonen, Olive, 1977)

strong coupling → change of D.o.F. toward emergent ones;

Dirac condition → E and M couplings inversely related

E weakly coupled \rightarrow theory in terms of E language E strongly coupled \rightarrow theory better described by Magnetic.

What are Underlying the "Volcano"?

T<< Lambda QCD

T~Lambda QCD

T>> Lambda_QCD

Vacuum: confined

Tc sQGP

wQGP: screening

Emergent plasma with <u>E & M</u> charges:

chromo-magnetic monopoles are the "missing DoF"

Plasma of E-charges E-screening: g T

M-screening: g^2 T

Electric Flux Tube: Magnetic Condensate

$$\alpha_E * \alpha_M = 1.$$

$$\kappa \sim \frac{\alpha_E(T)\alpha_M(T)n_m(T)}{s(T)} = \frac{n_m/T^3}{s/T^3}$$

JL & Shuryak:

Phys.Rev.C75:054907,2007; Phys.Rev.Lett.101:162302,2008; Phys.Rev.C77:064905,2008; Phys.Rev.D82:094007,2010; Phys.Rev.Lett.109:152001,2012.

FROM TALK @ DNP2011

QUENCHING & VISCOSITY LINKED-UP: FROM NEAR TC TO HIGHER T

Will we see a systematic deviation from RHIC to LHC?

The "see-saw"-QGP expects such a picture to occur in a narrow regime 1-4Tc.

Energy Loss on the Hadronic Side

$$\hat{q}_h = \frac{\hat{q}_N}{\rho_N} \left[\frac{2}{3} \sum_M \rho_M(T) + \sum_B \rho_B(T) \right]$$

Chen, Greiner, Wang, Wang, Xu, arXiv:1002.1165

Hidalgo-Duque, Llanes-Estrada, arXiv:1309.7211

Energy Loss from the semi-QGP

$$\begin{split} S^{\text{qk}}(Q) \sim \ell \quad ; \quad S^{\text{gl}}(Q) \sim \ell^2 \\ \frac{dE}{dx} &= \left(S^{\text{qk}}(Q) \; \alpha_s^2 \, T^2 \, \pi \frac{N_f(N_c^2-1)}{12 \, N_c} \, \ln \left(\frac{ET}{m_D^2} \right) \right. \\ &+ \left. S^{\text{gl}}(Q) \left(\frac{(N_c^2-1)}{6} \ln \left(\frac{ET}{m_D^2} \right) + \frac{C_f^2}{6} \ln \left(\frac{ET}{M^2} \right) \right) \right) \end{split}$$

Collisional energy loss of heavy quark in semi-QGP: decrease toward Tc. (picture from the electric side) (magnetic charges make the rise.)

Lin, Pisarski, Skokov, arXiv:1312.3340