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• Jet quenching: parton in-medium energy loss!
➡observed charged hadron suppression in 

heavy-ion collisions

Phys. Lett. B720 (2013) 52 • Time to quantify the jet 
quenching mechanisms via the 
reconstructed jets!
✓ avoiding surface bias!
✓ better connection to theory!
✓ assessing jet quenching at 

partonic level
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Jets in heavy-ion collisions 

S. Aiola – Jet measurements in Pb-Pb - Quark Matter 2014  2 

Parton hard scattering  
Q2 >> 1 GeV2 

Radiation of soft gluons 
and quarks 

π±, π0, K±, K0, p, n, … 

Hadronization into a 
colorless spray of 

particles 

In heavy-ion collisions 
scattered partons 

interact with the hot 
dense medium J. Phys. G: Nucl. Part. Phys. 38 (2011) 035006 J Casalderrey-Solana et al
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Figure 2. Schematic illustration of the spatial embedding of a dijet event in a heavy ion collision.
In a central Pb+Pb collision, the overlap of the lead ions in the plane transverse to the beam
direction fills a region of more than 10 fm diameter with dense QCD matter. The leading jet and its
recoil propagate through this matter on the way to the detectors. Compared to typical time scales
in QCD, O(10 fm/c) is a very long time scale for interactions between a set of partonic projectiles
and the surrounding QCD matter. This allows for strong medium-modifications of jets in heavy
ion collisions.

matter. In contrast, the primary partonic process of a dijet event in this region occurs at a large
momentum transfer ofO(ET ) and is therefore localized on a point-like scale ∼1/ET within the
QCD matter. This sharp localization, illustrated by the red dot in figure 2, implies that typical
soft momentum components of the surrounding QCD matter cannot resolve the primary hard
partonic interaction and therefore will not modify it. However, the partons produced in the
primary hard process may traverse a significant path length within the QCD matter, and it is
during this final-state propagation that the medium can modify the jet structure.

We note that already in proton–proton collisions there are characteristic differences
between the leading jet and its recoil. In particular, requiring a maximal jet energy ET1

within a cone of R = 0.4, one selects jet fragmentation patterns that deposit more than the
average jet energy fraction inside the subcone of size R = 0.4. In the presence of medium
effects, further trigger biases can occur. In particular, if there is a medium-induced mechanism
that degrades the jet energy fraction in a subcone as a function of in-medium path length, then
the leading jet will be oriented preferably in a direction in which its path length is minimal.
This results in a surface bias of the location of dijet events entering the experimental data
sample. On average, the recoiling jet will see a larger in-medium path length and will hence
suffer a more significant medium modification than the leading jet. On the other hand, there
may also exist a significant contribution of dijet events produced tangentially to the nuclear
overlap region, for which the in-medium path length of the recoiling jet is comparable to that
of the leading jet (corona effect). A quantitative understanding of the medium modification of
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Jet quenching 
!  suppression of jet yield 
!  broadening of jet shape 
!  di-jet energy imbalance 
!  etc. 

Challenge: large, fluctuating background! 

Initial parton hard scattering (Q2 >> ΛQCD)

Radiation of (soft) gluons and quarks

Hadronization into a spray of 
colorless particles — Jet

Jets are attractive both experimentally and theoretically
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Jets%in%pp,%p*Pb%and%Pb*Pb%

Measure$$jets$in$pKPb$and$PbKPb$collisions$and$study,$rela3ve$to$pp,$$
$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$jet$yield$suppression$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$modifica3on$of$the$transverse$energy$profile$or$broadening$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$dijet$or$hadronKjet$acoplanarity$$
$
to$understand$mechanisms$of$energy$loss$of$partonic$projec3les$in$(colored/nuclear)$medium$
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

• Hard partons produced before the 
QCD medium forms!

• Interact with the hot dense medium 

22

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1

• Out-of-cone radiation: energy loss in jet cone!
➡ jet yield suppression, dijet or hadron jet acoplanarity…!

• In-cone radiation: medium modified fragmentation function!
➡ jet shape broadening, modification of transverse energy profile…

RAA =
1/TAA1/NevdNAA/dpT

d�pp/dpT
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Jets%in%pp,%p*Pb%and%Pb*Pb%

Measure$$jets$in$pKPb$and$PbKPb$collisions$and$study,$rela3ve$to$pp,$$
$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$jet$yield$suppression$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$modifica3on$of$the$transverse$energy$profile$or$broadening$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$dijet$or$hadronKjet$acoplanarity$$
$
to$understand$mechanisms$of$energy$loss$of$partonic$projec3les$in$(colored/nuclear)$medium$
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Study of cold nuclear matter!
• Initial state effects:!
➡Color Glass Condensate (CGC)?!
➡nuclear modified Parton Distribution 

Function (nPDF)…!
!

• Final state effects:
➡parton scattering in cold nuclear matter…!

!

Baseline for heavy-ion collisions:!
➡disentangle the initial state effects from the hot and dense 

medium produced in the final state of the heavy-ion collisions



Jet Measurement with ALICE
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• Tracking: |η|<0.9, 0<φ<2π!
• TPC: gas drift detector!
• ITS: silicon detector

• EMCal: |η|<0.7, 1.4<φ<π!
• a Pb-scintillator 

sampling calorimeter

Charged particle correction: 
prevents energy double counting

Neutral 
constituentsCharged 

constituents
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Results in pp Collisions
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• Agree with NLO pQCD 
calculations within errors!

• Reference for jet measurements 
in p–Pb and Pb–Pb collisions

• Cross section ratio: provides 
the measurement of jet 
transverse structure
➡hint: intra-jet radiation distribution well described in NLO 

calculations with hadronization

Phys. Lett. B772 (2013) 262

Phys. Lett. B772 (2013) 262
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Results in Pb–Pb 
Collisions
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Nuclear Modification Factor
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• Consistent with ALICE 
published results on 
charged jet RCP

• Observed strong, centrality dependent jet suppression

JHEP 03 (2014) 013
Full jets

Charged jets
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Comparison with Theoretical Models
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• Good agreement between data and models within errors!
➡both models fitted to the single particle RAA

JEWEL: JHEP 1303 (2013) 080, Eur. Phys. J. C74 (2014) 2762!
YaJEM: Phys. Rev. C78 (2008) 034908, Phys. Rev. C84 (2011) 067902
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• Agreement between ALICE and ATLAS:!
➡contribution of low momentum jet fragments to jet energy is small!

• RCP for jets and single hadrons are similar:!
➡ indicates the momentum is redistributed to larger angles

• ATLAS: calorimetric jets!
!

• ALICE: charged particle 
jets — more sensitive to 
the low-momentum 
fragments



Ratio of Jet Spectra
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• Charged jet ratio consistent with vacuum jets (PYTHIA) and no 
centrality dependence!
➡no evidence of jet structure modification in cone



Semi-inclusive Recoil Jet Distribution

11ATHIC2014, X. Zhang for the ALICE Collaboration

Leticia Cunqueiro Hard Probes 2013

3

|φ
T|T

-φ
Recoil

Jet
 
-π|<0.6

Semi-inclusive recoil jet distribution

Inclusive trigger selection
 Select randomly one of the hadrons that
 fall in the given trigger class (T|T)
 →calculable in pQCD
Semi-inclusive recoil jet yield:
 Count the number of jets in the recoil region 
 and normalize by the number of triggers

 Increase hadron trigger p
T  
→higher Q2  process →harden recoil jet spectrum

Jet finding is collinear 
safe with minimal IR cutoff

recoil jet
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• Hadron triggered recoil jet spectrum: minimal 
surface and fragmentation bias down to low pT

• Dominated by combinatorial 
jets — uncorrelated with 
trigger hadron pT

• Recoil jet spectrum — evolves 
with trigger hadron pT

Only charged jets are 
used for the recoil jet 

analysis in ALICE



Δrecoil Distribution
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• Opportunity: remove combinatorial background by considering the 
difference of the recoil jet spectra for two exclusive hadron trigger 
intervals
�

recoil

= [1/N
trg

dN/dp
T,jet]trg � [1/N

ref

dN/dp
T,jet]ref

• Δrecoil is free of the 
combinatorial background!
!

• Still has to be corrected for 
background smearing of jet 
energy and detector effects



Recoil Jet ΔIAA
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• Difference in energy loss mechanism or modeling 
collision/medium?

• YAJEM: agrees with data!
• JEWEL: ΔIAA ~ 0.4 

underestimates the 
measurement



Ratio of Recoil Jet Yield
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• Δrecoil(R=0.2)/Δrecoil(R=0.4): no evidence for significant energy 
redistribution within R=0.4!

• Δrecoil(R=0.2)/Δrecoil(R=0.5): data systematically below PYTHIA (in 
jet pT>36 GeV/c) — hint of energy redistribution?



Hadron–Jet Azimuthal Correlation

15ATHIC2014, X. Zhang for the ALICE Collaboration

Leticia Cunqueiro Hard Probes 2013

14

Hadron-jet azimuthal correlation

Can the medium-induced radiation emitted out of cone 
change the jet direction?
             -multiple soft uncorrelated emissions→null net momentum?
             -semihard (unlikely) in medium?          
                      

Recoil Jet

Δφ

 CMS dijets: very high Q2 processes
 Correlation peak the same in data 
 and PYTHIA 

Phys.Lett.B712 (2012)176

ALICE hadron-jet:
  -lower Q2 process
  -minimal bias on    
   fragmentation

• Can medium-induced radiation emitted out-of-
cone change the jet direction?
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• PYTHIA consistent with data within errors — no evident medium-
induced acoplanarity observed for selected kinematics 
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Results in p–Pb 
Collisions



Charged Jet RpA
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• No significant cold nuclear effect has been observed on jet 
production in p–Pb collisions!
➡ jet suppression in Pb–Pb is final state effect
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Full jets
Charged jets

• Results consistent with no significant cold nuclear effect on jet 
transverse structure in R<0.4 in p–Pb collisions!
!

• The same conclusion for both full jets and charged jets



Dijet kT in p–Pb Collisions
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kT via dijets in p-Pb
● kT

- Intrinsic kT + initial and final state radiation 
  + cold nuclear matter (CNM) effects
- Radiation: soft (Gaussian) + hard from NLO (power law)
- CNM: scattering of parton in nucleus

Trigger 
jet

Associated jetHard Probes 2013Marta Verweij 7

kT via dijets in p-Pb
● kT

- Intrinsic kT + initial and final state radiation 
  + cold nuclear matter (CNM) effects
- Radiation: soft (Gaussian) + hard from NLO (power law)
- CNM: scattering of parton in nucleus

Trigger 
jet

Associated jet

• Dijet kT in p–Pb collisions!
➡ intrinsic kT + initial and final state radiations!
➡+ scattering of parton in cold nuclear matter

kT = ptriggerT,jet sin(�'dijet)



kT vs. Trigger pT
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Trigger Jet pT

• No Significant deviation in data compared to PYTHIA



Dijet kT Width
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• kT width increases with trigger jet pT!
➡compatible in data and PYTHIA simulations!

• No modification of kT width observed also in high multiplicity events



Particle Production in p–Pb Collisions
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• Enhanced Λ/KS0 ratio!
➡ involving several phenomena:!

➡ radial flow!
➡ coalescence/recombination!
➡ jet fragmentation…!
!

Study Λ/KS0 ratio in jets in p–Pb!
➡ separation of soft and hard 

processes

• Double ridge structure!
!

• v2 > 0 and PID dependent

High multiplicity p–Pb and Pb–Pb collisions - similarities

Phys. Lett. B726 (2013) 164

Phys. Lett. B719 (2012) 29

Phys. Lett. B728 (2014)  25



Λ/KS
0
 Ratio in Jets in p–Pb Collisions
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• Λ/KS0 ratio significantly lower in jets than inclusive!
• Ratio for different radii is the same within uncertainties!
• Similar observation within errors for high and low multiplicity events

0-10% 40-100%

jet axis

charged
primary
particles

V0

jet cone
R



Comparison with PYTHIA
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• Λ/KS0 ratio in jets in p–Pb consistent with PYTHIA simulations!
• underlying event dominated by soft particle production!
➡an interplay of radial flow and recombination!
➡next step: proton/φ ratio inside and outside jets — study mass 

dependence — radial flow

ALI-DER-85858



Conclusion
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• Pb—Pb collisions!
• Large jet yield suppression — RAA,RCP < 1!
• No significant energy redistribution within R < 0.4!
➡ ratio of jet and Δrecoil spectra consistent with vacuum jets!

• No evident medium-induced acoplanarity!
➡Δrecoil(Δφ) distribution reproduced by PYTHIA!

!

• p–Pb collisions!
• No indication of cold nuclear effects for jet observables!
➡ jet RpPb = 1, energy redistribution and dijet kT in agreement with 

vacuum case!
• Underlying event dominated by soft particle production!
➡ the enhanced ratio of Λ/KS0 is not present within the jet region



Outlook
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• Hadron–jet correlations!
• Jet fragmentation function!
• Heavy flavor in jets!
• Jet v2

talk: D. Watanabe,!
Aug 16, 2:00pm
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Inclusive jet production
in hadron-induced processes

fastNLO
http://projects.hepforge.org/fastnlo
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The latest version of this figure can be obtained from

 http://projects.hepforge.org/fastnlo



Jet Finder
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• Experiment does not know about initial partons and the evolution 
just about the final detected particles!

• Jet finder algorithm: assemble particles to obtain the physical 
observable!

• infrared and collinear safe: soft emission and collinear splitting 
should NOT change jets!

• identical defined at parton and hadron level: calculations can be 
compared to experiments!

• Two main jet algorithm classes!
• cone-type algorithms: identify energy flow in cones — infrared and 

collinear safe must be carefully studied!
• sequential clustering algorithms: pair-wise successive 

recombinations — simple definition, infrared and collinear safe



Sequential Clustering Algorithms
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L =

X

q

 q,a(i�
µ@µ�ab � gs�

µtCabAC
µ �ma�ab) q,b �

1

4

FA
µ⌫F

A,µ⌫

1. For each pair of particles, i and j, calculate:

dij = min{p2nT,i, p
2n
T,j}

(⌘i � ⌘j)2 + ('i � 'j)
2

R
,

8
><

>:

n = 1 kT algorithm

n = 0 C/A algorithm

n = �1 anti-kT algorithm

R is resolution parameter which is one of the inputs of the jet finder

2. if dij = min{dij, p2nT,i, p
2n
T,j}, merge particles i and j into a single particle:

pT,r = pT,i + pT,j

'r = (wi'i + wj'j)/(wi + wj)

⌘r = (wi⌘i + wj⌘j)/(wi + wj)

wi = 1, pT,i, p2T,i for di↵erent recombination schemes

3. repeat from step 1 until no particle is left

1



Jet Area: kT vs. anti-kT
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arXiv:08021189

• The jet area can be used to access jet susceptibility to 
contaminations: underlying background, pileup…

• kT: the detailed jet shapes are in part determined!
• anti-kT: more like the circles — insensitive to soft radiation



Measured Jets in Experiment
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• Reporting a jet with pT = 100 GeV/c in data is meaningless!
!

• A correct way to define a measured jet is:!
• a full (or charged) jet at pT = 100 GeV/c!
• with resolution parameter (jet cone size) R = 0.2!
• reconstructed by anti-kT algorithm with pT/ET-scheme!
!

• But one has to keep in mind that the measured jet pT may be 
contaminated by:!

• energy redistribution, detector effects and underlying background 
and background fluctuations…



Analysis Workflow
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Analysis overview 

3 

Average background 
subtraction 

Charged 
tracks 

Corrected 
EMCal 
clusters 

Jet finder 
anti-kT 

Charged tracks 

EMCal clusters 

Charged 
particle 

correction 

Detector level 
jet spectrum 

Unfolding 

fdet (pT
det) = RMcomb (pT

det, pT
part)× ε (pT

part) × fpart(pT
part) 

Particle level 
jet spectrum 

S. Aiola – Jet measurements in Pb-Pb - Quark Matter 2014  

Tracking: |η| < 0.9, 0° < φ < 360°  
TPC: gas detector 
ITS: silicon detector 

EMCal 
Pb�scintillator  
sampling calorimeter 
|η| < 0.7, 80° < φ < 180° 

Centrality in Pb-Pb 
collisions determined 
using the V0 detector: 
scintillator counters at 
forward rapidity 

RMcomb = RMbkg × RMdet 
RMbkg = Background fluctuations response matrix 
RMdet  = Detector effects response matrix 

Start 

Start Charged tracks (pT>150 MeV/c)

EMCal clusters (ET>300 MeV) Charged hadron 
correction

Average jet 
background 
subtractionDetector level jet spectrum

Unfolding:!
• background fluctuations!
• detector response

Final particle level 
jet spectrum



Average Background Density
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• Event-by-event background is obtained using the charged particle 
jets reconstructed by kT algorithm

• Scaled to account for neutral 
energy

• Background density in most 
central Pb–Pb event:!

• ~200 GeV/c per unit area!
• ~25 GeV/c for R=0.2 jets

⇢charged = median(
pchT,kTjet

Ach
kTjet

)

⇢scaled = ⇢charged

P
Ecluster

T +
P

ptrackTP
ptrackT



Jet Spectra at Detector Level
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pdetT,jet = pmeas
T,jet � ⇢Ajet

• With charged leading hadron pT>5 GeV/c!
• suppress combinatory background!
• bias towards harder fragmentation



Background Fluctuations: Random Cone
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• The size of background fluctuations is characterized by δpT

�pT =
X

RC

pT,part � ⇢scaled ⇥ ⇡R2

• Asymmetry distribution!
• LHS: Gaussian-like — 

dominated by soft particle 
production!

• RHS: tail due to hard 
particles — jets overlap



Background Fluctuations: Embedding
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• Single particle embedding δpT is compared with random cones!
• difference gives the the uncertainty on background fluctuations



Detector Effect
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• Detector effect: obtained by PYTHIA+realistic detector simulations!
• detector resolution — response matrix!
• jet reconstruction efficiency — dominated by the single track 

efficiency of the leading hadron!
➡multiplicity dependence is determined by Hijing simulations

pT,part: particle level jet pT!
pT,det: detector level jet pT



Jet Momentum Resolution
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• Background fluctuations: smaller in semi-central collisions (10-30%) than in 
central collisions (0-10%), dominate in pT<30 GeV/c!

• Detector effects: independent of centrality and pT, dominate in pT>30 GeV/c



Jet pT Spectra at Particle Level
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• Corrections applied for both 
detector effects and 
background fluctuations 
through unfolding!
!

• Unfolding methods!
• Pb–Pb: SVD, Bayesian, χ2!
• pp: Bayesian, bin-by-bin



Background Scale Factor
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Again: Background
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• Challenge in heavy-ion collisions!

• large combinatorial background and 
background fluctuations!

• leading track cut: suppress 
combinatorial jets — surface bias!

• small jet radius: decrease the 
background fluctuations — missing 
redistributed energy



Event Plane Dependence of Jets
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Corrected Jet Spectrum
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• Jet measurements in p–Pb collisions!
!

• crucial test of the cold nuclear effects!
!

• using the similar techniques as in Pb–
Pb collisions!
!

• background density is corrected by 
the event occupancy to since the 
large local fluctuations of the event 
multiplicity
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• K/π ratio increases with z/pT!

!

• Proton/π ratio suppression 
at high z/pT!

!

• No scaling with particle pT 
observed!
!

• scaling in z > 0.2
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