Jet Physics with ALICE at the LHC

Xiaoming Zhang for the ALICE Collaboration

The 5th ATHIC, August 5–8, 2014, Osaka, Japan

ATHIC2014 OSAKA

Introduction

Jet Quenching

 Jet quenching: parton in-medium energy loss
 observed charged hadron suppression in heavy-ion collisions

 Time to quantify the jet quenching mechanisms via the reconstructed jets
 ✓ avoiding surface bias
 ✓ better connection to theory
 ✓ assessing jet quenching at partonic level

ATHIC2014, X. Zhang for the ALICE Collaboration

Jets in Proton–Proton Collisions

Jets are attractive both experimentally and theoretically

- Out-of-cone radiation: energy loss in jet cone
 - ⇒ jet yield suppression, dijet or hadron jet acoplanarity...
- In-cone radiation: medium modified fragmentation function
- → jet shape broadening, modification of transverse energy profile...

ATHIC2014, X. Zhang for the ALICE Collaboration

 $\mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}$

Jets in Proton–Nucleus Collisions

- Study of cold nuclear matter
- Initial state effects:
- ➡ Color Glass Condensate (CGC)?
- nuclear modified Parton Distribution Function (nPDF)...
- Final state effects:
- ➡ parton scattering in cold nuclear matter...
- Baseline for heavy-ion collisions:
 - disentangle the initial state effects from the hot and dense medium produced in the final state of the heavy-ion collisions

Jet Measurement with ALICE

Results in pp Collisions

Jet p_T Spectra

 Cross section ratio: provides the measurement of jet transverse structure

- Agree with NLO pQCD calculations within errors
 - Reference for jet measurements in p–Pb and Pb–Pb collisions

hint: intra-jet radiation distribution well described in NLO calculations with hadronization

Results in Pb–Pb Collisions

Nuclear Modification Factor

• Observed strong, centrality dependent jet suppression ATHIC2014, X. Zhang for the ALICE Collaboration

Comparison with Theoretical Models

JEWEL: JHEP 1303 (2013) 080, Eur. Phys. J. C74 (2014) 2762 YaJEM: Phys. Rev. C78 (2008) 034908, Phys. Rev. C84 (2011 $R_{\rm AA}$ Д АА Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV **ALICE Preliminary** ALICE Preliminary Pb-Pb S = 2.76 TeV anti- $k_{T} R = 0.2$ anti- $k_{\rm T} R = 0.2$ JEWEL 0 - 10% $|\eta_{iet}| < 0.5$ |η_.|<0.5 'jet leading → YaJEM 10 - 30% – YaJEM 0 - 10% $p_{\rm T,charged}^{\rm leading}$ > 5 GeV/*c* > 5 GeV/ c T,charged 0 - 10% 10 - 30% 0.5 0.5 60 100 110 120 30 90 90 40 50 70 80 30 40 50 60 70 80 100 110 120 $p_{\rm T,jet}~({\rm GeV}/c)$ $p_{\rm T.iet} \, ({\rm GeV}/c)$ ALI-DER-85845 ALI-PREL-80008

Good agreement between data and models within errors
 both models fitted to the single particle R_{AA}

Comparison with ATLAS and CMS

- Agreement between ALICE and ATLAS:
- contribution of low momentum jet fragments to jet energy is small
- R_{CP} for jets and single hadrons are similar:
- indicates the momentum is redistributed to larger angles

Ratio of Jet Spectra

- Charged jet ratio consistent with vacuum jets (PYTHIA) and no centrality dependence
 - no evidence of jet structure modification in cone

Semi-inclusive Recoil Jet Distribution

Δ_{recoil} Distribution

- Opportunity: remove combinatorial background by considering the difference of the recoil jet spectra for two exclusive hadron trigger intervals
 - $\Delta_{\rm recoil} = [1/N_{\rm trg} dN/dp_{\rm T,jet}]_{\rm trg} [1/N_{\rm ref} dN/dp_{\rm T,jet}]_{\rm ref}$

- Δ_{recoil} is free of the combinatorial background
- Still has to be corrected for background smearing of jet energy and detector effects

Recoil Jet ΔI_{AA}

• Difference in energy loss mechanism or modeling collision/medium?

Ratio of Recoil Jet Yield

 $\Delta_{\text{Recoil}}(\text{R=0.2})/\Delta_{\text{Recoil}}(\text{R=0.4})$ $\Delta_{\text{Becoil}}(\text{R=0.2})/\Delta_{\text{Becoil}}(\text{R=0.5})$ ∆_{Recoil}(R=0.2)/∆_{Recoil}(R=0.5 ALICE data **ALICE data** Shape uncertainty Shape uncertainty Correlated uncertainty Correlated uncertainty PYTHIA Perugia:Tune 0,10 &11 PYTHIA Perugia:Tune 0,10 &11 reshold TT[20,50]-[8,9] TT[20,50]-[8,9] p_{T}^{const} > 0.15 GeV/*c* anti-k_T p_{τ}^{const} > 0.15 GeV/*c* anti-k_T 0.2 0.2 Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 0-10% Pb-Pb √*s*_{NN}=2.76 TeV 0-10% 80 90 10 40 60 20 30 90 10 20 30 50 70 50 60 70 80 100 40 100 $p_{\rm T,iet}^{\rm ch}({\rm GeV}/c)$ $p_{\rm T,iet}^{\rm ch}({\rm GeV}/c)$ ALT-PREL-64020 ALI-PREL-64024

- $\Delta_{\text{recoil}}(R=0.2)/\Delta_{\text{recoil}}(R=0.4)$: no evidence for significant energy redistribution within R=0.4
- $\Delta_{\text{recoil}}(R=0.2)/\Delta_{\text{recoil}}(R=0.5)$: data systematically below PYTHIA (in jet $p_T>36 \text{ GeV}/c$) hint of energy redistribution?

Hadron–Jet Azimuthal Correlation

PetiPaYTHIA consistent with data within errors — no evident mediuminduced acoplanarity observed for selected kinematics ATHIC2014, X. Zhang for the ALICE Collaboration

Results in p–Pb Collisions

Charged Jet R_{pA}

- No significant cold nuclear effect has been observed on jet production in p–Pb collisions
 - jet suppression in Pb–Pb is final state effect

- Results consistent with no significant cold nuclear effect on jet transverse structure in *R*<0.4 in p–Pb collisions
- The same conclusion for both full jets and charged jets

Dijet k_T in p–Pb Collisions

- Dijet k_T in p–Pb collisions
 - \Rightarrow intrinsic k_T + initial and final state radiations
 - + scattering of parton in cold nuclear matter

*k*_T vs. Trigger *p*_T

Trigger Jet *p*_T

No Significant deviation in data compared to PYTHIA

Dijet k_T Width

- $k_{\rm T}$ width increases with trigger jet $p_{\rm T}$
- compatible in data and PYTHIA simulations
- No modification of k_{T} width observed also in high multiplicity events

Particle Production in p–Pb Collisions

High multiplicity p–Pb and Pb–Pb collisions - similarities

NKs Ratio in Jets in p–Pb Collisions

- Λ/K_{S^0} ratio significantly lower in jets than inclusive
- Ratio for different radii is the same within uncertainties
- Similar observation within errors for high and low multiplicity events ATHIC2014, X. Zhang for the ALICE Collaboration

Comparison with PYTHIA

- Λ/K_{S^0} ratio in jets in p–Pb consistent with PYTHIA simulations
- underlying event dominated by soft particle production
- ➡ an interplay of radial flow and recombination
- next step: proton/φ ratio inside and outside jets study mass dependence radial flow

ATHIC2014, X. Zhang for the ALICE Collaboration

ALICE

Conclusion

Pb—Pb collisions

- Large jet yield suppression $-R_{AA}, R_{CP} < 1$
- No significant energy redistribution within R < 0.4
 - rightarrow ratio of jet and Δ_{recoil} spectra consistent with vacuum jets
- No evident medium-induced acoplanarity
 - $\Rightarrow \Delta_{recoil}(\Delta \phi)$ distribution reproduced by PYTHIA

p–Pb collisions

- No indication of cold nuclear effects for jet observables
 - → jet $R_{pPb} = 1$, energy redistribution and dijet k_T in agreement with vacuum case
- Underlying event dominated by soft particle production
 the enhanced ratio of Λ/K_S⁰ is not present within the jet region

Outlook

ATHIC2014, X. Zhang for the ALICE Collaboration

Backup

Motivation

ATHIC2014, X. Zhang for the ALICE Collaboration

Jet Finder

- Experiment does not know about initial partons and the evolution just about the final detected particles
- Jet finder algorithm: assemble particles to obtain the physical observable
 - infrared and collinear safe: soft emission and collinear splitting should NOT change jets
 - identical defined at parton and hadron level: calculations can be compared to experiments
- Two main jet algorithm classes
 - cone-type algorithms: identify energy flow in cones infrared and collinear safe must be carefully studied
 - sequential clustering algorithms: pair-wise successive recombinations — simple definition, infrared and collinear safe

Sequential Clustering Algorithms

1. For each pair of particles, i and j, calculate:

$$d_{ij} = \min\{p_{\mathrm{T},i}^{2n}, p_{\mathrm{T},j}^{2n}\} \frac{(\eta_i - \eta_j)^2 + (\varphi_i - \varphi_j)^2}{R}, \begin{cases} n = 1 & k_{\mathrm{T}} \text{ algorithm} \\ n = 0 & \mathrm{C/A algorithm} \\ n = -1 & \mathrm{anti-}k_{\mathrm{T}} \text{ algorithm} \end{cases}$$

 ${\cal R}$ is resolution parameter which is one of the inputs of the jet finder

2. if $d_{ij} = \min\{d_{ij}, p_{T,i}^{2n}, p_{T,j}^{2n}\}$, merge particles *i* and *j* into a single particle:

$$p_{\mathrm{T},r} = p_{\mathrm{T},i} + p_{\mathrm{T},j}$$

$$\varphi_r = (w_i \varphi_i + w_j \varphi_j) / (w_i + w_j)$$

$$\eta_r = (w_i \eta_i + w_j \eta_j) / (w_i + w_j)$$

 $w_i = 1, p_{\mathrm{T},i}, p_{\mathrm{T},i}^2$ for different recombination schemes

3. repeat from step 1 until no particle is left

Jet Area: k_T vs. anti-k_T

 The jet area can be used to access jet susceptibility to contaminations: underlying background, pileup...

- k_{T} : the detailed jet shapes are in part determined
- anti- k_{T} : more like the circles insensitive to soft radiation ATHIC2014, X. Zhang for the ALICE Collaboration

- Reporting a jet with $p_T = 100 \text{ GeV}/c$ in data is meaningless
- A correct way to define a measured jet is:
 - a full (or charged) jet at $p_T = 100 \text{ GeV}/c$
 - with resolution parameter (jet cone size) R = 0.2
 - reconstructed by anti- k_T algorithm with p_T/E_T -scheme
- But one has to keep in mind that the measured jet p_T may be contaminated by:
 - energy redistribution, detector effects and underlying background and background fluctuations...

Average Background Density

• Event-by-event background is obtained using the charged particle jets reconstructed by $k_{\rm T}$ algorithm $\rho_{\rm charged} = {\rm median}(\frac{p_{{\rm T},k_{\rm T}{\rm jet}}^{\rm ch}}{A_{L_{-}{\rm ict}}^{\rm ch}})$

 Scaled to account for neutral energy

 $\rho_{\text{scaled}} = \rho_{\text{charged}} \frac{\sum E_{\text{T}}^{\text{cluster}} + \sum p_{\text{T}}^{\text{track}}}{\sum p_{\text{T}}^{\text{track}}}$

- Background density in most central Pb–Pb event:
 - ~200 GeV/c per unit area
 - ~25 GeV/*c* for *R*=0.2 jets

Jet Spectra at Detector Level

- With charged leading hadron p_T>5 GeV/c
 - suppress combinatory background
 - bias towards harder fragmentation

Background Fluctuations: Random Cone

• The size of background fluctuations is characterized by δp_T

$$\delta p_{\rm T} = \sum_{\rm RC} p_{\rm T,part} - \rho_{\rm scaled} \times \pi R^2$$

- Asymmetry distribution
 - LHS: Gaussian-like dominated by soft particle production
 - RHS: tail due to hard particles — jets overlap

ALI-PREL-79202

- Single particle embedding δp_T is compared with random cones
 - difference gives the the uncertainty on background fluctuations

Detector Effect

- Detector effect: obtained by PYTHIA+realistic detector simulations
- detector resolution response matrix
- jet reconstruction efficiency dominated by the single track efficiency of the leading hadron

multiplicity dependence is determined by Hijing simulations ATHIC2014, X. Zhang for the ALICE Collaboration

Jet Momentum Resolution

- Background fluctuations: smaller in semi-central collisions (10-30%) than in central collisions (0-10%), dominate in $p_T < 30$ GeV/c
- Detector effects: independent of centrality and p_T , dominate in p_T >30 GeV/c

ATHIC2014, X. Zhang for the ALICE Collaboration

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

anti- $k_{\rm T} R = 0.2 |\eta_{\rm iet}| < 0.5$

 $p_{\text{T.charged}}^{\text{leading}} > 5 \text{ GeV/}c$

- Corrections applied for both detector effects and background fluctuations through unfolding
 - Unfolding methods
 - Pb–Pb: SVD, Bayesian, χ²
 - pp: Bayesian, bin-by-bin

ALI-PREL-77657

10⁻⁶

ALICE Preliminary

Background Scale Factor

Again: Background

- Challenge in heavy-ion collisions
- large combinatorial background and background fluctuations
- leading track cut: suppress
 combinatorial jets surface bias
- small jet radius: decrease the background fluctuations — missing redistributed energy

ALI-PERF-44496

- Used to investigate the path length dependence of jet energy loss
- non-vanished v₂ in semi-central collisions (30-50%) with 2σ effect
 ATHIC2014, X. Zhang for the ALICE Collaboration

Corrected Jet Spectrum

- Jet measurements in p–Pb collisions
 - crucial test of the cold nuclear effects
 - using the similar techniques as in Pb– Pb collisions
 - background density is corrected by the event occupancy to since the large local fluctuations of the event multiplicity

K/π and P/π ratios in Jets in pp Collisions ALICE

- K/ π ratio increases with z/p_{T}
- Proton/ π ratio suppression at high z/p_{T}
- No scaling with particle p_{T} observed
- scaling in z > 0.2

