

Contribution ID: 10 Type: parallel

The fluidity of hot interacting hadrons flowing out of chemical equilibrium

The ratio η/s of the shear viscosity, η , and the entropy density, s, of hot interacting hadrons is calculated using the Chapman-Enskog and virial expansion methods. Interactions are parametrized using the K-matrix which preserves the unitarity of the S-matrix. In the four component mixture $\pi-K-\eta-N$, 57 resonances up to 2 GeV are included. Increasing number of resonances is shown to reduce η and increase s resulting in a progressive decrease of η/s for temperatures close to the QCD

phase transition temperature. The addition of finite chemical potential reduce the value of η/s even more in the comparison with zero chemical potential.

Prospects of hot hadrons becoming a "perfect" fluid are discussed.

Primary author: Dr WIRANATA, Anton (CCNU)

Co-authors: Prof. PRAKASH, Madappa (Ohio University); KOCH, Volker (LBNL); WANG, Xin-Nian (Lawrence

Berkeley National Lab. (US))

Presenter: Dr WIRANATA, Anton (CCNU)