

Jet azimuthal distributions with high p_T neutral pion triggers in pp collisions Vs = 7 TeV from LHC-ALICE

University of Tsukuba Daisuke Watanabe

- Jet physics of heavy ion collisions at the LHC
- Physics motivation of π^0 -jet correlations
- A large Ion Collider Experiment (ALICE)
- Analysis procedure
- Results
- Next step : Pb-Pb analysis
- Summary

Jet physics of heavy ion collisions at the LHC

- Mainly particle correlation analyses due to lower jet cross section at the RHIC than at the LHC
- Difficult to extract information on initial parton energy and parton path length in QGP

More detailed measurements are needed

- Initial parton energy : γ-jet analysis
- Parton path length : hadron-jet analysis

Physics motivation of π^0 -jet correlation

- Can control path length by tagging a recoil jet with triggered π^0 and changing p_T for π^0
- High p_T of π^0 -> longer path length of recoiling jets
- Direct measurement of path length dependence of "jet" quenching, not by hadron
- pp analysis is an important baseline for PbPb analysis

A Large Ion Collider Experiment (ALICE)

- Data set
 - pp collisions at $\sqrt{s} = 7$ TeV with EMCal triggered events
 - Number of events : 10 M

Charged jet reconstruction (FASTJET)

 $d_{ij} = \min(k_{ii}^{2p}, k_{ij}^{2p}) \frac{\Delta R^2}{R^2} \begin{cases} p=1 & k_{\rm T} \text{ algorithm} \\ p=0 & \text{Cambridge/Aachen algorithm} \\ p=-1 & \text{anti-k}_{\rm T} \text{ algorithm} \end{cases}$

Procedure of jet finding

- 1. Calculate particle distance : d_{ii}
- 2. Calculate Beam distance $:d_{iB} = k_{ti}^{2p}$
- 3. Find smallest distance $(d_{ij} \text{ or } d_{ib})$
- If d_{ij} is smallest combine particles
 If d_{ib} is smallest and the cluster
 momentum larger than threshold
 call the cluster Jet

Parameters

- R size (= $\sqrt{\Delta \phi^2} + \Delta \eta^2$) : 0.4
- p_T cut on a single particle : 0.15 GeV/c
- Jet energy threshold : 10 GeV/c
- Jet acceptance : $|\eta| < 0.5, 0 < \varphi < 2\pi$

Energy dependence of shower shape parameter

- The opening angle of the neutral mesons decay photon becomes smaller, when increasing the neutral meson energy due to Lorentz boost
- In the EMCAL, when the energy of π^0 is lager than 5 GeV
 - The two clusters of decay photon start to be close
 - The electromagnetic showers start to overlap

The procedure of cluster splitting method

- 1. Select neutral cluster with $\lambda_0^2 > 0.3$, track matching etc
- 2. Find local maxima in the cluster
- 3. Split the cluster in two new sub-clusters taking the two highest local maxima cells and aggregate all towers around them (form 3x3 cluster)
- 4. Get the two new sub-clusters, and calculate energy asymmetry and invariant mass

 Overlap cell energy is calculated by using weight of each local maxima cell energy

Split cluster 1 : E = 12.67 GeV

Invariant mass and $\pi^0 p_T$ distribution

- 3σ invariant mass window from peak mean is selected as π^0
- We can identify π^0 up to 40 GeV/*c*

 π^0 triggered jet azimuthal correlations

- Detector acceptance correction (event mixing method)
 - 100 events pool
 - Z vertex = (-10, 10) cm, 2 cm wide bins
 - -Track multiplicity, 9 bins on multiplicity

- π⁰ and jet reconstruction efficiency correction (bin-by-bin correction)
 π⁰ reconstruction efficiency (non-uniform): Δp_T = 1.0 GeV/c
 - Jet finding efficiency (uniform) : 3 different jet p_T bins

$$\frac{1}{N_{trig}^{corrected}} \frac{dN_{pair}^{corrected}}{d\Delta\phi} = \frac{1}{\sum_{\Delta p_{T,(i)}} \frac{1}{\varepsilon_{i}^{\pi^{0}}} \cdot N_{trig(i)}^{\pi^{0}} (\Delta p_{T}^{trig})} \sum_{\Delta p_{T,(i)}} \frac{1}{\varepsilon_{i}^{\pi^{0}} \varepsilon^{jet}} \frac{dN_{pair(i)}^{Raw}}{d\Delta\phi} (\Delta p_{T}^{trig})$$

Trigger p_T dependence of azimuthal correlations

Increaseing charged jet p_T threshold

- Two clear jet-like peaks are observed, indicating that high $p_T = \pi^0$ production is correlated with jet production
- The jet yields of near and away side

increase with increasing trigger $\pi^0\,p_{_T}$

筑波大学

University of Tsukuba

Near and away-side widths as a function of $\pi^0 p_T$

- Near and away-side widths decrease slightly with increasing trigger $\pi^0 p_T$
- Almost no difference observed for different jet p_T thresholds studied

ALICE

Next step : Pb-Pb analysis

• Study the path length dependence by selecting different trigger $\pi^0 p_T$ in the ratio of the per-trigger yield (I_{AA})

 $\Psi : event \ plane \ angle, \ \varphi_s : angle \ between \ EP \ and \ trigger \ \pi^0$

 Possible to extract more details on path length dependence by combing information on centrality and event plane orientation

Summary

- π⁰-jet correlations have been measured in pp collisions at √s = 7 TeV with cluster splitting method
- Azimuthal yields per trigger π^0 increase with increasing trigger π^0 p_T
- Both near and away side Gaussian widths are decreasing with increasing p_T of trigger π^0
- The decrease is stronger for the away-side correlation width
- The π^0 -jet correlation measurement provides an important baseline for Pb-Pb data

Back up

Charged particle jets spectra and full jet R_{AA}

Strong jet suppression: R < 0.5

π^0 and jet reconstruction efficiency

• π^0 reconstruction efficiency

 $\varepsilon_{PID}(E) = \frac{clusters \ generated \ by \ 2\gamma \ from \ \pi^0 \ decay \ identified \ as \ \pi^0 \ for \ NLM = X}{all \ clusters \ generated \ by \ 2\gamma \ from \ \pi^0};$

• Jet reconstruction efficiency

- the ratio between the number of reconstructed matched jets and the number of particle level jets in the jet acceptance

$$\varepsilon_{jet}(p_{\mathrm{T,gen}}^{\mathrm{ch\,jet}}) = \frac{N_{\mathrm{matched}}}{N_{\mathrm{particle\,level}}^{|\eta_{\mathrm{gen}}| < 0.5}},$$

