

Neutral pion analysis with high energy photon trigger in pp collisions at 8TeV

The 5th Asian Triangle Heavy Ion Conference 06/08/2014 Satoshi Yano (Hiroshima University)

Outline

- Motivation
- How to extract neutral pion signal
- 0.9, 2.76 and 7 TeV results
- 8 TeV analysis strategy and results
- Summary and outlook

Motivation

- Understanding particle production mechanisms (at low p_T) and test of pQCD cross section predictions (at high p_T).
- Constraint on the gluon to pion fragmentation.
- Reference data for Pb-Pb and p-Pb collisions.
- Main source of background of direct γ and electron from heavy-flavor.

The ALICE detector

Photon detection in ALICE

- Calorimeters
 - PHOS:
 - PbWO4 crystal
 - 3 modules at 4.6 m from the ALICE IP
 - |η|< 0.13, 260°<φ<320°
 - EMCal:
 - 77 layers 1.4 mm lead + 1.7 mm scintillator
 - 10 modules at 4.4 m from ALICE IP
 - |η|< 0.7, 80°<φ<180°
- Photon Conversion Method (PCM)
 - Photon conversion in detector material
 - ITS and TPC $(X/X_0 = 11.4 \pm 0.5_{sys} \%)$
 - |η|< 0.9, 0°<φ<360°

Photon conversion in material

Material thickness is X/X_0 =11.4±0.5_{sys} %. ALICE material budget agrees within ±4.5% with its implementation in GEANT simulations

π^0 in pp: NLO pQCD calculations

pQCD NLO: CTEQ6M5 (PDF) and DSS (FF) π^0 in pp $\sqrt{s} = 0.9$ TeV reproduced π^0 in pp $\sqrt{s} = 2.76$ TeV and 7 TeV over estimate

Due to FF? Discuss NLO vs √s in Nucl. Phys. B883 (2014) 615

π^0 in pp: CGC calculations

T. Lappi, H. Mantysaari, Phys. Rev. D88 (2013) 114020

 $k_{\rm T}$ factorization, MV^e and MV^{γ} initial conditions Parameters fixed to DIS data. DSS LO Fragmentation Function

High energy photon trigger (PHOS trigger)

proton-proton bunch crossing occured at interval of 50ns in 2012 at LHC-P2

Trigger response for cluster energy

Rejection factor in pp collisions at $\sqrt{s} = 8$ TeV is ~5000!

Neutral pion trigger efficiency

- MC simulation
- PYTHIA6 + single π^0 + GEANT

Neutral pion trigger efficiency

- MC simulation
- PYTHIA6 + single π^0 + GEANT

Results

Minimum-bias data cover low p_T region. On the other hand, PHOS trigger data covers mid to high p_T region!

Minimum-bias

MeV/c² 300 Events / 4 MeV/c Events / 10 MeV/c² 600 p-p, √s=8 TeV ALICE performance p-p, √s=8 TeV p-p, √s=8 TeV ALICE performance ALICE performance 16 Minimum-bias PHOS trigger PHOS trigger 23.07.2014 23.07.2014 23.07.2014 0.95×10^{6} events (L_{int}=70 nb⁻¹) 19×10^6 events (L_{int}=340 µb⁻¹) 0.95×10^6 events (L_{int}=70 nb⁻¹) 4 PHOS PHOS 14 PHOS Events / 500 1.0<p_<1.2 GeV/c 250 10.0<p_<10.5 GeV/c 30.0<p_<40.0 GeV/c 12 400 — signal+bkg 200 - signal+bkg - signal+bkg 10 - - signal — fit — fit — fit 300 150 8 6 100 4 100 50 2 0 0 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 m_{yy} (GeV/c²) m_{yy} (GeV/c²) m_{yy} (GeV/c²)

Neutral pion can be measured up to 40 GeV/c with PHOS trigger!

PHOS trigger

Summary and outlook

- Neutral pion has been measured in pp collisions at 0.9, 2.76 and 7 TeV with several methods.
- 8TeV data is being analyzed with not only Minimum-bias but also PHOS triggered data.
- PHOS trigger was operated in Pb-Pb and p-Pb collisions and R_{AA} and R_{pPb} in a very wide p_T range are expected to be obtained shortly
- Other neutral mesons (η and ω) can be measured in a wide p_T range in all collision systems.