

Measurement of heavy-flavour correlations in pp and p-Pb collisions with ALICE

By: Jitendra Kumar (IIT Bombay, India) of behalf of the ALICE Collaboration

Date: 06/08/2014

Outline

- Physics motivations
- ALICE detector
- Analysis method
- · D meson- charged particle angular correlations in pp and p-Pb collisions
- Summary and outlook (including Pb-Pb)

Open heavy flavour in heavy-ion collisions:

Meavy quarks produced in the initial stage of the collision (production time 0.05-0.15 fm/c) \rightarrow powerful probes for studying the properties of **QGP**.

We can investigate the properties of the dense matter by studying its influence on open heavy-flavour production.

ALICE observed

A significant modification of the momentum distribution of D mesons in Pb-Pb compared to pp collisions.

→ heavy quark in-medium energy loss

$$R_{\rm AA}(p_{\rm T}) = \frac{dN_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle d\sigma_{\rm pp}/dp_{\rm T}}$$

Non-zero D-meson v_2 in $2 < p_T < 6$ GeV/c

→ suggests that charm takes part in the collective expansion of the medium

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos[2(\varphi - \Psi_2)]}{2v_2 \cos[2(\varphi - \Psi_2)]} + \dots \right)$$

Phys. Rev Lett. 111, 102301 (2013), arXiv:1405.2001

Physics Motivation

Azimuthal correlations of high- p_T trigger hadrons with other hadrons produced in heavy-ion collisions are sensitive to:

- → in medium partonic energy loss:
 - path-length dependence of energy loss
 - surface bias (due to high- p_T selection for trigger particle)
 - away-side suppression.

- → possible modification of jet formation (modified parton shower and fragmentation)
 - modification of near and away side associated yields and correlation peak widths.

Main observable: $I_{AA} = Y_{PbPb} / Y_{pp}$

where Y_{PbPb} and Y_{pp} are the yield in Pb-Pb and pp collisions.

Physics Motivation

Di-hadron (i.e. light flavour) correlations with ALICE

Comparing central Pb-Pb to pp collisions

Near side: 20% enhancement

Away side: 50% suppression

Phys. Rev. Lett. 108, 092301 (2012)

*no such effect in 60-90% peripheral Pb-Pb collisions

Possibility of similar effect in the heavy-flavour correlations? IAA for heavy-flavours?

Azimuthal correlations Due to their large masses, heavy quarks (charm and beauty) are predominantly produced via hard scatterings in the initial phase of the collision.

- → They experience the full evolution of the system, losing energy while interacting with the medium.
- → Energy loss predicted to be different for gluons, light quarks and heavy quarks.
 - Dead cone effect.
 - Casimir factor.
- $\Delta E_g > \Delta E_{(u,d,s)} > \Delta E_c > \Delta E_b$ Dokshitzer & Kharzeev, PLB 519(2001)199)
- → Harder fragmentation relative to light quarks and gluons: experimentally accessible meson kinematics closer to parton kinematics.

pp collision: ✓ reference for p-Pb and Pb-Pb collisions.

✓ information on different charm production mechanisms

ALICE (A Large Ion Collider Experiment) is specifically optimized for the study of heavy-ion collisions at the LHC.

Detectors used in this analysis:

- → Inner Tracking System (ITS)
- → Time Projection Chamber (TPC)
- → Time Of Flight (TOF)

Heavy flavour detection with ALICE

Tracking: the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) embedded in a magnetic field of 0.5 T, allow track reconstruction in the pseudorapidity range $-0.9 < \eta < 0.9$.

 $^{\odot}$ down to low p_T $^{\odot}$ excellent resolution on track momentum and impact parameter

Particle identification: Particle identification with TPC and TOF via the measurement of the specific energy loss dE/dx and of the time of flight $rac{1}{2}$ separate pions and kaons up to 1.5(2) GeV/c in pp(p-Pb) collisions

DATA Samples

pp,
$$\sqrt{s} = 7$$
 TeV, 3.1 x10⁸ minimum-bias triggers (2010 sample)

p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV, 1.0 x10⁸ minimum-bias triggers (2013 sample)

D meson signal extraction

- \rightarrow Invariant mass analysis of *D*-meson candidates.
- → Displaced vertices selected via topological cuts
- → PID on decay products

25/07/2012

3.07 x 108 Events

D*+

	r+ and charge conjugate, 2 <p<sub>T<24GeV/c p-Pb, √s_{NN} = 5.02 TeV, 102 M events</p<sub>
4000 ALICE	Significance (3d) 59.7 ± 0.8
D+ 3000 6/07/201	S (3 σ) 7166 \pm 133 S/B (3 σ) 0.9926 μ = 1.869 \pm 0.0003 GeV/ c^2 σ = 0.010 \pm 0.0003 GeV/ c^2

Decay Channel	Branching Ratio
$D^+ \rightarrow K^- \pi^+ \pi^+$	$9.13 \pm 0.19\%$
$D^{\theta} \rightarrow K^{-} \pi^{+}$	$3.88 \pm 0.05\%$
$D^{*+} \rightarrow D^{\theta} \pi^+ \rightarrow K^- \pi^+ \pi^+$	$2.62 \pm 0.10\%$

Challenge with HF

M(Kxx)-M(Kx) (GeV/c2)

- Large statistics needed
- Migh combinatorial background (in the reconstruction of D-meson hadronic decays)
 - * tight selection applied (low D-meson selection efficiency)

Invariant Mass (Kππ) (GeV/c2)

- * need to subtract correlations of background
- ✓ Contamination due to D from B decays

Analysis Method

2. Azimuthal correlations

Each selected *D*-meson is correlated with charged tracks produced in the collision (excluding the *D*-meson daughter particles)

1. Raw Correlations

Background subtraction from side bands

Obtain D-hadron correlations in

S1. $\pm 2\sigma$ region (S+B)

S2. $-(8 \sigma - 4 \sigma)$ Left side band (B)

S3. $+(4\sigma - 8\sigma)$ Right side band (B)

S4. Add bkg from Left + Right with scaling. $WB_L + WB_R \sim B_o(\pm 2\sigma)$

S5. Subtract S4 from S1.

3. Corrections

Detector acceptance and inhomogeneities via Mixed Events

D-meson reconstruction and selection efficiency Associated track reconstruction efficiency Subtraction of feed-down from B decays

4. Systematic errors evaluation

Results from pp collision at 7 TeV

D-meson p_T range low(3-5) mid(5-8) high(8-16) GeV/c

Associated particle p_T > 0.3, 0.5, 1.0 GeV/c

- → Correlations are measured for D⁰, D^{+*}, D⁺
- \rightarrow In different p_T intervals of D: low(3-5), mid(5-8), high(8-16) GeV/c
- \rightarrow With different thresholds on associated particle $p_T > 0.3$, 0.5, 1.0 GeV/c

Data analysis

Case of D⁺

low (D+) pT mid (D⁺) p_T high (D+) pt

Associated particle pt threshold

> 0.5 GeV/c > 1.0 GeV/c

ALI-PREL-78761

17% scale uncertainty

scale uncertainty

> 0.3 GeV/c 🖟

Data analysis

- Average of the D⁰, D⁺*, D⁺ mesons
- \P (left plot) D-meson p_T 5-8 GeV/c and hadron $p_T > 0.5$ GeV/c
- (right plot) Near side associated yield vs. D-meson p_T (low, mid, high) with hadron $p_T > 0.5 \text{ GeV/}c$

* Near side associated yield is taken from the fit to the correlation distribution at Δ φ = 0

Data vs. Pythia

- Average of the D⁰, D⁺*, D⁺ mesons
- $^{\circ}$ (left plot) D-meson $p_{\rm T}$ 5-8 GeV/c and hadron $p_{\rm T}$ > 0.5 GeV/c
- $\sqrt[p]{}$ (right plot) D-meson p_T 8-16 GeV/c and hadron p_T > 0.5 GeV/c

Data are described within uncertainties by different PYTHIA tunes

Results from collision p-Pb at 5.02 TeV

D-meson p_T range mid(5-8) high(8-16) GeV/c

Associated particle p_T > 0.3, **0.5, 1.0** GeV/c

Results from p-Pb at 5.02 TeV

Data analysis

- Average of the D^0 , D^{+*} , D^+ mesons
- (left plot) D-meson p_T 5-8 GeV/c and hadron $p_T > 0.5$ GeV/c
- (right plot) Near side associated yield vs. D-meson p_T (mid, high) with hadron $p_T > 0.5 \text{ GeV}/c$

* Near side associated yield is taken from the fit to the correlation distribution at Δ φ = 0

Results from p-Pb at 5.02 TeV

Data analysis

- $\red P$ Average of the D^0 , D^{+*} , D^+ mesons
- P (left plot) D-meson p_T 8-16 GeV/c and hadron $p_T > 1.0$ GeV/c (with fit)
- (right plot) Near side associated yield vs. D-meson p_T (mid, high) with hadron $p_T > 1.0 \text{ GeV/c}$
 - * Near side associated yield is taken from the fit to the correlation distribution at $\Delta \varphi = 0$

Comparison of pp and p-Pb

D-meson *p*_T range high(8-16) GeV/*c*

Associated particle *p*_T > 1.0 GeV/*c*

Data analysis

- Average of the D⁰, D⁺*, D⁺ mesons
- \Re (left plot) D-meson p_T 8-16 GeV/c and hadron $p_T > 1.0$ GeV/c
- (right plot) Near side associated yield vs. D-meson p_T (low, mid, high) with hadron $p_T > 1.0 \text{ GeV}/c$

* Near side associated yield is taken from the fit to the correlation distribution at $\Delta \varphi = 0$

Compatibility within uncertainties between pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV correlation distributions after baseline subtraction.

Perspectives with ALICE upgrades

Upgraded ITS will provide better spatial resolution

Higher integrated luminosity: $L_{int}(Pb-Pb) = 10 \text{ nb}^{-1}$

From continuous readout of min. bias interactions at 50 kHz

Measurements will benefit a lot from increased statistics from the ALICE-ITS upgrades (will arrive in 2018)

* Pb-Pb data this time...

Summary

First measurement of the angular correlations between D mesons and charged hadrons in pp and p-Pb collisions is presented.

Results in pp collisions at $\sqrt{s} = 7$ TeV are compatible with predictions from different PYTHIA tunes Results from p-Pb collisions are compatible with pp collisions after baseline subtraction.

Such measurements will benefit a lot from increased statistics in Run II and from the ALICE upgrades.

Thankyou