BGV MC Digitization

Status and plans

Plamen Hopchev
CERN BE-BI-BL

BGV meeting #27

12 Feb 2014

Overview

- Some info about the LHCb SW model and data processing steps discussed at BGV meeting #23
- In this talk, discuss considerations about:
 - The BGV SciFi raw data format (TELL1 output)
 - Decoding the raw data into Event model classes (LiteClusters and Clusters)
 - Creating Clusters from simulated events, and Encoding into raw data format

BGV SciFi Raw data format (1)

- Use the Velo Raw Data format
 - Defined in https://edms.cern.ch/document/637676/2
 - Raw bank structure shown below
 - This is the data produced by one TELL1 for one event

LSB on the right, MSB on the left

BGV SciFi Raw data format (2)

Remarks about the raw bank structure and contents

- This format is efficient for the BGV SciFi data, because the Velo and BGV modules have the same number of channels
 - Encode cluster position in 14 bits: 11 bits for the strip ID (2048 channels) and 3 bits for the ISF (inter-strip fraction)
- The maximum cluster size is 4, encoded in 1 bit
 - 0, when size is 1 or 2; 1, when size is 3 or 4
 - Can distinguish 1-strip and 2-strip clusters using the ISF
- Allows quick decoding into clusters without ADC info (LiteClusters, useful for the SW trigger)

Raw data and Processing

- 1. Decode raw bank, create C++ (Event Model) objects
- 2. Event Model classes to store the BGV data
 - Allows the objects to be persistified (stored in a file)
- 3. Energy deposition in scint. fibers, light transport, SiPM QE, cross-talk, etc.
- 1'. Encode Clusters to raw bank, opposite to step 1

Raw data and Processing

Real Data Path ① ② BGV → RawBank → Clusters Simulation Path MC Simulation → Clusters → RawBank

- 1. Decode raw bank, create C++ (Event Model) objects
- 2. Event Model classes to store the BGV data
 - Allows the objects to be persistified (stored in a file)
- 3. Energy deposition in scint. fibers, light transport, SiPM QE, cross-talk, etc.
- 1'. Encode Clusters to raw bank, opposite to step 1
- All this is implemented in LHCb. Copy and modify from Velo and SciFi
- Initially, concentrate on items 1, 1', and 2

Status and Plans

- Raw bank encoding / decoding algorithms
 - It is essential to use the existing Velo/ST algorithms!
- Class SciFiChannelID
 - Purpose: unique identification of all SciFi channels (in all modules)
 - Velo implementation
 - type + sensor + strip (the last is in the raw bank, provided by the decoder)
 - Not optimal for BGV (e.g. don't need type), but can be used
 - Intention: 1-to-1 copy, replace Velo with SciFi
- Could be re-implemented in the future, consider better granularity (matt ID, SiPM ID, etc.)
- Classes SciFiLiteCluster and SciFiCluster
 - Velo implementation
 - LiteCluster = ChannelID + size + ISF + SO bit (the last three are in the raw bank, provided by the decoder)
 - Cluster = LiteCluster + ADCVector (the ADCs are in the raw bank, provided by the decoder)
 - Intention: 1-to-1 copies, replace Velo with SciFi
 - No envisaged modifications for the moment

Status and Plans ctd.

- Can use Velo raw data banks (in LHCb raw data) to test and compare the raw data en/decoding with the new BGV SciFi algorithms and Event Model classes
- Current progress
 - Implemented SciFiChannelID and SciFiLiteCluster
- Decoding test successful
- Next steps
 - Implement SciFiCluster, more decoding tests
 - Try encoding, make tests
 - Implement a simplified digitization, i.e. don't consider effects like light attenuation, SiPM QE, cross-talk
 - Produce raw files

Additional Slides

«particle physics» software chain

