117th LHCC meeting

ALICE STATUS REPORT

B

(Lund University) for the ALICE Collaboration

LUND UNIVERSITY

В

Picture © Antonio Saba / ALICE

Outline

• Recent physics results

• Run 1 performance with a focus on run 2

• LS1 progress

• Run 3 upgrade TDRs

Published and submitted papers since last LHCC meeting

- "Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at Vs_{NN}=2.76 TeV", Phys. Rev. Lett. 111, 232302 (2013)
- "Multiplicity dependence of pion, kaon, proton and lambda production in p–Pb collisions at √s_{NN} = 5.02 TeV", Phys. Lett. B 728 (2014) 25-38
- "Multi-strange baryon production at mid-rapidity in Pb−Pb collisions at √s_{NN}=2.76 TeV", Phys. Lett. B 728 (2014) 216–227
- "Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions with ALICE", Eur. Phys. J. C (2013) 73, 2662
- "Two and Three-Pion Quantum Statistics Correlations in Pb-Pb Collisions at √s_{NN}=2.76 TeV at the LHC", Phys. Rev. C 89, 024911 (2014)
- 2 more accepted
- "Production of charged pions, kaons and protons at large transverse momenta in pp and Pb-Pb collisions at Vs_{NN} = 2.76 TeV", <u>http://arxiv.org/abs/1401.1250</u>
- "Performance of the ALICE Experiment at the CERN LHC", http://arxiv.org/abs/1402.4476

$N_{ch} p_T$ spectra in pp collisions for all beam energies

4

5

$N_{ch} p_T$ spectra in pp collisions for all beam energies

Ζ

d'Enterria et al, arXiv:1311.1415

6

$N_{ch} p_T$ spectra in pp collisions for all beam energies

EPJC 73, 2662 (2013)

ALI-PUB-60518

Constructing baseline reference spectra

Ratios between spectra at two energies are described by NLO

Constructed references are consistent with NLO scaling from $\sqrt{s}=7$ TeV pp results

The nuclear modification factor in p-Pb and Pb-Pb PRL 110, 082302 (2013) ALICE, charged particles 1.8 • p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, \text{ NSD}, |\eta_{cms}| < 0.3$ 1.6 Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}, 0.5\% \text{ central}, |\eta| < 0.8$ Pb-Pb $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}, 70-80\% \text{ central}, |\eta| < 0.8$ 1.4 R_{pPb} , R_{PbPb} .2 0.8 0.6 0.4 0.2 2 0 6 8 10 12 14 16 18 20 $p_{_{T}}$ (GeV/c)

ALI-PUB-44351

$$\begin{split} R_{\rm AA} &= \frac{d^2 N^{\rm AA}/dp_{\rm T} d\eta}{\langle T_{\rm AA} \rangle d^2 \sigma^{\rm pp}/dp_{\rm T} d\eta} \\ < &T_{\rm AA} > \sigma^{\rm pp} = < N_{\rm coll} > \text{ is $\#$ binary collisions} \end{split}$$

For pQCD processes: R_{AA} < 1: suppression R_{AA} =1: no nuclear effects R_{AA} >1: enhancement

9

The nuclear modification factor in p-Pb and Pb-Pb

$$R_{AA} = \frac{d^2 N^{AA}/dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma^{pp}/dp_T d\eta}$$
$$< T_{AA} > \sigma^{pp} = < N_{coll} > \text{ is } \# \text{ binary collisions}$$

The new ALICE preliminary results are consistent with no modications up to $p_T = 50 \text{ GeV}/c$.

Using particle identification to understand the structure

Collectivity in small systems? Color glass condensate, hydrodynamics, color reconnection, or ?

A hot topic for XXIV QUARK MATTER DARMSTADT 2014

117th LHCC meeting

R_{p-Pb} for $\psi(2S)$: the p_T dependence

The $\psi(2S)$ suppression in the direction of the Pb nuclei is not expected by Cold Nuclear Matter effects or energy loss Could be due to a co-mover effect?

R_{p-Pb} for $\psi(2S)$: the p_T dependence

The $\psi(2S)$ suppression in the direction of the Pb nuclei is not expected by Cold Nuclear Matter effects or energy loss Could be due to a co-mover effect?

Need more statistics (run 2) to make a firm conclusion on the question if the suppression is p_T dependent.

ALICE status report

Motivation: searching for "footprints" of the energy loss

Gluons lose 2 times (color factor) more energy than quarks in the medium

<u>Christiansen, L</u>und) ٩. ALICE status report

Charged π, K, and p spectra in pp and Pb-Pb collisions

The π , K, p spectra measured in pp collisions for $p_T > 10$ GeV/c are in themselves important for constraining identified FFs

Pb-Pb particle ratios are consistent with those obtained in pp collisions for $p_T > 10 \text{ GeV}/c$

Improving the precision around the p/π peak

HMPID is the ALICE Ring Imaging Cherenkov detector

The nuclear modification factors are consistent for π , K, p for $p_{\tau} > 10$ GeV/c. For 0-5% Pb-Pb collisions: K and π are consistent to within ~10% (syst) p and π are consistent to within ~25% (syst)

The results rules out popular ideas of jet quenching where the large energyloss is coupled to large leading order particle species dependent effects.

 $\xi = \ln(1/z)$

Run 1 performance with a focus on run 2

ALICE measurements during the full-energy LHC Run 2 (2015–2017) will, on one hand, focus on low p_T observables where triggering is not possible. The goal here is to increase the statistics to ~500 million minimum bias Pb–Pb events. Concerning rare probes, it is planned to inspect 1 nb⁻¹ Pb–Pb interactions in the rare-trigger running mode.

ALICE main trigger capabilities

Muon arm pp dimuon-triggered data in 2011, $\mathcal{L} = 1.35 \text{ pb}^{-1}$

TRD rare triggers

MUON rare triggers

charged jet

electron for quarkonia

single muon low

single muon high

dimuon like sign

dimuon unlike sign

electron for open beauty

TJE

TOU

TSE

MSL

MSH

MUL

MLL

EMCal trigger

The EMCal triggering is necessary for ALICE to utilize efficiently the collision rates of run 2 which can be up to 10-20 kHz for Pb-Pb.

The existing EMCal will be complemented in run 2 by the new Di-Jet Calorimeter DCal to enable "back-to-back" analyses

Standard Stress Photon Conversions PHOS EMCal 9 ALICE pp (s=7 TeV) 9 ALICE pp (s=7 TeV) 9 9 PCM PHOS EMCal 9 ALICE pp (s=7 TeV) 9 ALICE pp (s=7 TeV) 9 9 PCM PHOS EMCal 9 PCM PHOS EMCal

direct (hard) photon measurements.

10⁵

 10^{4}

R (cm)

The integrated detector material for R < 180 cm and $|\eta| < 0.9$ amounts to a radiation thickness of 11.4 ± 0.5% X_0 and results in a conversion probability of about 8.5%.

This precision goes directly into all photon analyses.

Christiansen,

<u>ط</u>

ALICE status report

TRD performance

The TRD with its large acceptance and triggering capabilities at intermediate $p_T = 2-5$ GeV/c is particularly suited for dilepton measurements, including quarkonia, while the trigger capabilities of EMCal (and PHOS) complements these capabilities in a smaller acceptance and makes it possible to sample the full luminosity for high- p_T electron measurements (from heavy-flavor decays).

In terms of tracking the TRD is critical for extending the tracking to $p_T > 50 \text{ GeV}/c$ and it will play an important role in calibrating the upgraded GEM TPC (run 3).

TDI rework to decrease the background

High vacuum pressure in the long straight sections upstream of ALICE were causing excessive background from beam-gas collisions during ALICE pp operations in 2012.

The TDI injection collimator was identified as one of the main sources of this problem.

The TDI is at this moment on the surface and is being refurbished in order to mitigate these problems:

- Beam screens are being replaced
- More pump capacity
- NEG (Non Evaporable Getter) coating
- More JAW cooling and decreasing of impedance

Availability of P2 services during 2014

Week number	From	То	Intervention type								
			Cooling						Gas		Electricity
2	6-Jan	12-Jan									
3	13-Jan	19-Jan	1								
4	20-Jan	26-Jan	1							MCH/MTR	
5	27-Jan	2-Feb	1						1	MTR/PMD	
6	3-Feb	9-Feb									
7	10-Feb	16-Feb			05				ţi	TRD	
8	17-Feb	23-Feb	Ē						50	0 0	
9	24-Feb	2-Mar	8		Ĕ				Ē	HMPID	27-28.3: stop UX racks
10	3-Mar	9-Mar	ůhů)		nd A				GCS)		400V/18kV power cut
11	10-Mar	16-Mar	de		3)s(10.3: AUG
12	17-Mar	23-Mar	gra		Ħ				ten		
13	24-Mar	30-Mar	dŋ		a l				Sys	700	29.3: autotransfert
14	31-Mar	6-Apr	ter		acer	Portable chiller			ltrol	IPC	
15	7-Apr	13-Apr	d wa		Repl				SCor	TOF	
16	14-Apr	20-Apr	lille	SF2		No cooling P2	PLC r	relocation UX->CR5	Ga	101	
17	21-Apr	27-Apr	ð				ାର ଅନ୍ଦ	TRD / SDD-SSD	1		
18	28-Apr	4-May	1				nar	TOF-PHOS-EMC		CPV	
19	5-May	11-May]			No cooling	et co ainte	TPC / HMPID			6.5: test reseau secour
20	12-May	18-May				and detector	а Ш	SPD			
21	19-May	25-May				cooling					
22	26-May	1-Jun									

Many service interruptions due to technical infrastructure maintenance at this moment \rightarrow negotiated stable conditions as from June 1st

SPD cooling fixed

- Silicon Pixel detector had problems of cooling power due to clogged filters in front of the detector in an inaccessible region
- Complex remote drilling operation successfully reestablished the nominal flow
- Comparison with February 2012, before the drilling started

DAQ – CR1 coming back to life

DAQ in CR1 being reinstalled after full replacement and extension of hardware. Goal: DAQ available from June 1st 2014 for global commissioning

Preparations for installation of TRD modules

Counterweights are installed. Installation of TRD modules starts in May. Module 12 and 13 are at CERN. Module 14 well on the way. At this moment things are according to plan.

ALICE Control Room refurbishing

- Floor, ceiling & lights in place
- Ventilation ongoing
- Fire detection in March
- New desks in April
- Finalize cabling in May

ALICE upgrades for LS2

The TDR family is growing

ALICE TPC Upgrade TDR was submitted on monday

Two more TDRs are under preparation: Online-Offline (O²), Muon Forward Tracker (MFT)

Conclusions

- ALICE has published 5 papers and submitted 2 new papers since last LHCC
- New results highlights the importance of p_T spectra for pQCD and for understanding the energy loss mechanism in detail
- Preparations for run 2 analysis are going well
- The many ongoing consolidation activities at Point 2 during LS1 are on schedule
- ALICE TPC upgrade TDR submitted to LHCC

Backup slides

The nuclear modification factor in p-Pb

117th LHCC meeting 39

D meson production in p-Pb collisions

Production of D mesons at mid-rapidity are also in agreement with binary scaling at high p_{T} . No evidence for anti-shadowing.

D⁰ poduction in agreement with FONLL QCD calculations (large systematic uncertainty).

TDI vacuum pressure and the large background

Pressure measured in Long Straight Section 2 (LSS2)

Why expect particle species

dependent R_{AA} at high p_T ?

- Large effects at intermediate p_{T} does this effect just disappear?
- . The low value of $R_{\rm AA}$ suggests that most hard partons interacts strongly with the medium

- S. Sapeta and U.A. Wiedemann, Eur.Phys.J. C55 (2008) 293:
- Indirect
 - "in all models of radiative parton energy loss, the interaction of a parent parton with the QCD medium transfers color between partonic projectile and target. This changes the color flow in the parton shower and is thus likely to affect hadronization."
 - Direct
 - "In addition, flavor or baryon number could be exchanged between medium and projectile."

A general model with particle species dependent modifications

- Effect <u>inside jet</u>
- But for $p_T >> 8$ GeV/*c* we expect all hadrons to belong to jets

Target parton

Question: what do we learn about the interaction between parton and medium?

ALICE: trigger and multiplicity $p \rightarrow e^{Pb} (y_{CM} = y_{LAB} + 0.465 \rightarrow)$

- VZERO used for triggering and multiplicity (A side)
- Fluctuations in the number of hard scatterings are important because of the small number of participants ⇒ weaker multiplicity vs. impact parameter correlation than in Pb-Pb