Conclusions/Outlook

t-channel Single-top with complex-mass scheme matched to parton showers

Andrew Papanastasiou*

(DESY, Hamburg)

TOP LHC WG meeting

22nd May 2014, CERN

*Work in progress with:

Stefano Frixione (CERN), Stefan Prestel (DESY) and Paolo Torrielli (Zürich)

Thanks to Rikkert Frederix and Pierre Artoisenet for discussions and help

Purpose of this study

Progress in $\ensuremath{\mathsf{pQCD}}$ and automation have lead an improvement of the description of top quark final states

- in narrow-width approximation (NWA) [Bernreuther, Brandenberg, Si, Uwer, Campbell, Ellis, Tramontano, Melnikov, Schulze, Biswas, Scharf,...],
- and when top treated as offshell [Denner,Dittmaier,Kallweit,Pozzorini,Bevilacqua,Czakon,van Hameren,Papadopoulos,Worek,Falgari,Mellor,Signer,Gianuzzi,AP,Frederix, Frixione,Hirschi,Maltoni,Cascioli, Maierhoefer,Heinrich,Maier,Nisius,Schlenk,Winter,...] \rightarrow see J. Winter's talk

Next step: match this improved fixed-order to parton shower (PS).

- \rightarrow NWA: see P. Nason's talk
- \rightarrow less work for the PS to do
- \rightarrow top decay, finite-width effects all contained in hard event

Focus/study: (all in framework of mg5-aMC@NLO)

- 1. matching *t*-channel single top complex-mass scheme computation to PS
- 2. differences with other available approximations

Complex-mass scheme [Denner et al]

Complex-mass scheme: a renormalization scheme that introduces Γ_t at the level of the Lagrangian:

 $m_{t,0} = \mu_t + \delta \mu_t$, with $\mu_t^2 = m_t^2 - i m_t \Gamma_t$

 μ_t : complex pole of top quark propagator $\Rightarrow m_t = m_t^{\text{pole}}$

✓ allows for LO and NLO gauge-invariant calculations with finite-width effects
 ✓ automatable (see GoSam, mg5_aMC@NLO, OpenLoops)

This gives us increased perturbative control of the hard process at fixed-order.

t-channel Single-top with off-shell & non-resonant effects

[AP, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni '13]

$$p \ p
ightarrow W^+ \ J_b \ J_{\text{light}} \ + \ X$$

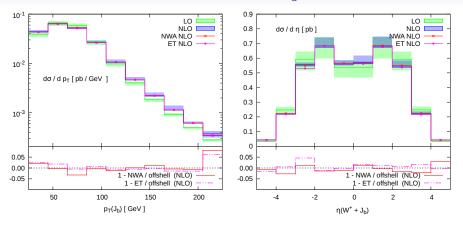
resonant diagrams, non-resonant diagrams + interferences

- 1. *t*-channel process in 5-flavour scheme (massless *bs*)
- 2. final state must contain a tagged *b*-jet, J_b :
 - J_b contains at least a b quark
 - J_b has non-zero p_T (here choose $p_T(J_b) > 25$ GeV)
- 3. CKM matrix diagonal in 3rd generation

Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: setup

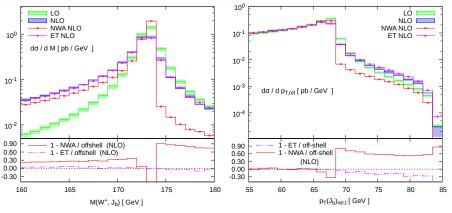
Note: chosen analysis cuts enhance resonant contributions

 \Rightarrow allow for a comparison between various approximations \checkmark


Compare:

- full off-shell result (complex-mass scheme): $p_t^2 \neq m_t^2$
- NWA, as implemented in MCFM: $p_t^2 = m_t^2$

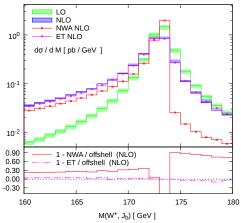
[Campbell,Ellis,Tramontano '04, Heim,Cao,Schwienhorst,Yuan,Mueller '09,'11]


• Effective theory (ET) approach \sim pole-expansion: $p_t^2 \sim m_t^2$ [Falgari,Mellor,Signer '10]

Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: results1

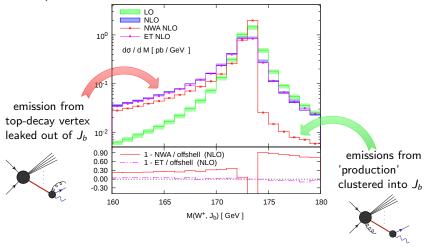
- ightarrow difference between NWA and off-shell approaches small $\sim \mathcal{O}(\Gamma_t/m_t) \sim$ 1-2%
- \rightarrow NWA curves lie within scale uncertainty bands of off-shell result \checkmark
- \rightarrow no visible differences in shape \checkmark

Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: results2

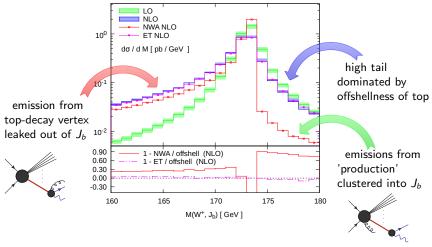

 \rightarrow difference between NWA and off-shell approaches sizeable (expected)

 \rightarrow finite-width effects <code>important</code> for shapes near and beyond peaks

Similar studies/conclusions (single top & $t\bar{t}$): [Falgari et al. '10,'11,'13, Bevilacqua et al. '11, Denner et al. '11,'12, Frederix '13, Cascioli et al. '13, Heinrich et al. '13]


Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: $M(W^+, J_b)$

NWA, though <u>not designed</u> to describe this, gives us an understanding of the structure behind the offshell distribution (which can be clouded in full offshell result):


Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: $M(W^+, J_b)$

NWA, though <u>not designed</u> to describe this, gives us an understanding of the structure behind the offshell distribution (which can be clouded in full offshell result):

Fixed order *t*-channel $W^+J_bJ_{\text{light}}$: $M(W^+, J_b)$

NWA, though <u>not designed</u> to describe this, gives us an understanding of the structure behind the offshell distribution (which can be clouded in full offshell result):

Matching to shower: studies

Aim to stay as close as possible to previous parton-level (fixed-order) study, in order to compare to features found there.

 $p_T(J_b) > 25 \text{ GeV} \quad p_T(J_{\text{light}}) > 25 \text{ GeV}$ $140 < M(W^+, J_b) < 200 \text{ GeV}$

Study $W^+ bj$ matched to PS:

- with two different PSMCs: Herwig6 and Pythia8.
- at hadron level (stable B-hadrons), but no underlying event
- use <u>MC-truth</u> to ensure fulfillment of key requirement: *b*-jet definition

 \rightarrow locate B-hadron from outgoing b-parton from hard process

 \rightarrow thus correctly identify *b*-jet

(multiple *b*-jets possible due to $g \rightarrow b\bar{b}$ splittings in shower phase)

Matching to shower: onshell tops

Stable top events: easy to deal with

```
hard process: pp \rightarrow t j + X
```

• top always written into LesHouches event, as a final state particle

1. hard event showered (with showering off top quark included)

- 2. top decay, $t \rightarrow W^+ b$ attached
- 3. further showering off *b*-parton, hadronization, etc ...

One wants to understand, since the PS preserves invariant mass of top in event, $% \left({{{\rm{PS}}} \right) = 0} \right)$

• effect of onshell assumption on observables?

Also easy: including decay including spin-correlations ($\rm MADSPIN)$ - but also get LO finite-width effects

Matching to shower: offshell tops, ambiguities, worries

Given that the final state is $W^+ bj$, should a 'top' ever be written in the event??

hard process: $pp \rightarrow W^+ J_b J_{\text{light}} + X$

<u>NO</u>

- does this even make sense: every event will contain some non-resonant contribution??
- deciding whether or not there is an intermediate top is, formally, a gauge-dependent procedure, based on (W^+, b) -virtuality

Matching to shower: offshell tops, ambiguities, worries

Given that the final state is $W^+ bj$, should a 'top' ever be written in the event??

hard process: $pp \rightarrow W^+ J_b J_{\text{light}} + X$

<u>NO</u>

- does this even make sense: every event will contain some non-resonant contribution??
- deciding whether or not there is an intermediate top is, formally, a gauge-dependent procedure, based on (W^+, b) -virtuality

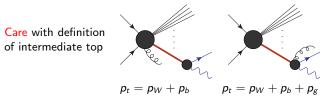
YES

- potential to spoil resonance structure/pattern if top never written (hard emissions off *b*-parton by shower, not captured in *b*-jet)
- writing the top in the event results in the parton shower preserving $M(W^+, b)$ (or $M(W^+, b, g)$), which is something that, at the hard event level is NLO correct (via use of the complex-mass scheme).
- want hadron-level result to reflect the fact that the dominant contributions are resonant ones

Matching to shower: offshell tops: event-structure

Writing top in events done via the procedure:

- define a 'top' momentum: $p_t^\mu = p_W^\mu + p_b^\mu ~(+p_g^\mu)$
- if: $\sqrt{p_t^2 m_t^2} < x_{\text{cut}} \Gamma_t \rightarrow$ write intermediate top in event
- if: $\sqrt{p_t^2 m_t^2} > x_{
 m cut} \Gamma_t \ o$ omit intermediate top from event

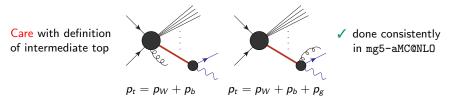

 $x_{cut}=0 \Rightarrow 0\%$ intermediate tops, $x_{cut}=\infty \Rightarrow 100\%$ intermediate tops

Matching to shower: offshell tops: event-structure

Writing top in events done via the procedure:

- define a 'top' momentum: $p_t^\mu = p_W^\mu + p_b^\mu ~~(+p_g^\mu)$
- if: $\sqrt{p_t^2 m_t^2} < x_{\rm cut} \Gamma_t \rightarrow$ write intermediate top in event
- if: $\sqrt{p_t^2-m_t^2}>x_{
 m cut}\Gamma_t~
 ightarrow$ omit intermediate top from event

 $x_{cut}=0 \Rightarrow 0\%$ intermediate tops, $x_{cut}=\infty \Rightarrow 100\%$ intermediate tops

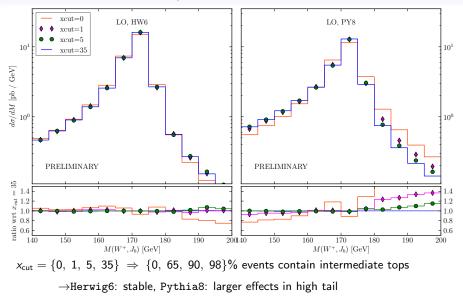


Matching to shower: offshell tops: event-structure

Writing top in events done via the procedure:

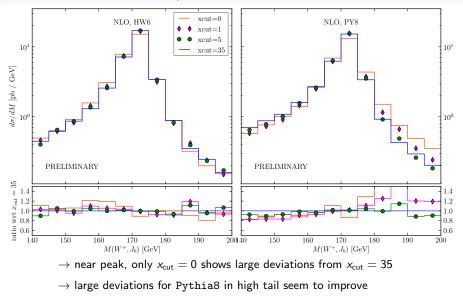
- define a 'top' momentum: $p_t^\mu = p_W^\mu + p_b^\mu ~(+p_g^\mu)$
- if: $\sqrt{p_t^2 m_t^2} < x_{\rm cut} \Gamma_t \rightarrow$ write intermediate top in event
- if: $\sqrt{p_t^2-m_t^2}>x_{
 m cut}\Gamma_t~
 ightarrow$ omit intermediate top from event

 $x_{cut}=0 \Rightarrow 0\%$ intermediate tops, $x_{cut}=\infty \Rightarrow 100\%$ intermediate tops


(for NLO, veto shower emissions off intermediate tops, to prevent double counting) (HW6: thanks to B. Webber)

A. Papanastasiou (DESY)

Single-top with complex-mass scheme & parton showers


CERN | 22.05.2014 | 12/18

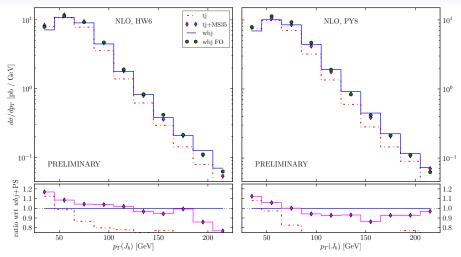
Variation of top in event: effect on resonance

A. Papanastasiou (DESY)

Variation of top in event: effect on resonance

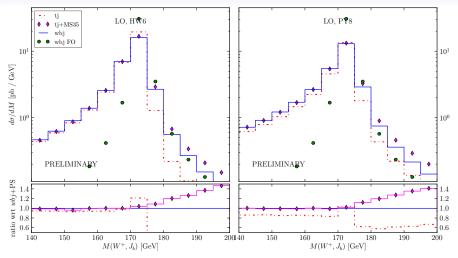
How well do approximations to full W^+bj fair?

Armed with full W^+bj + shower: important to compare to various approximations available and that have been used so far ...


- tj + shower
 - \rightarrow NLO single top with onshell, stable top events

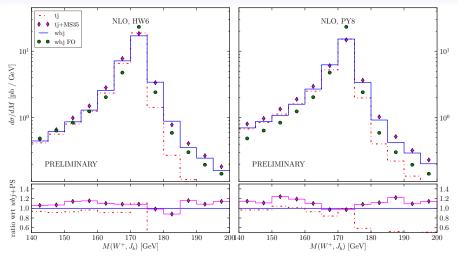
 \rightarrow top decays performed internally by PS

- *tj* + spin-correlations + shower
 - ightarrow NLO single top with onshell, stable top events
 - \rightarrow events decayed with $\mathrm{MadSPIN}^*$
 - ($\checkmark\,$ production-decay spin-correlations, $\checkmark\,$ LO offshell effects)


*[MADSPIN: Artoisenet, Frederix, Mattelaer, Rietkerk '12] [Frixione, Laenen, Motylinski, Webber '06]

Comparison of available approximations

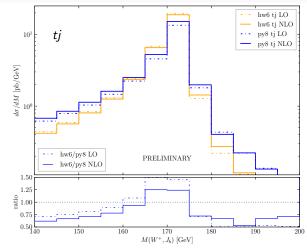
For observables sensitive to top decay, start seeing differences in shape


Comparison of available approximations

Importance of offshellness for shape shows up already at LO, at and beyond peak (note similar pattern to fixed-order $M(W^+, J_b)$)

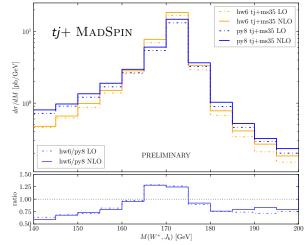
Intro

Comparison of available approximations


- ightarrow similar pattern as LO for tj
- $\rightarrow \, \mathrm{MadSPin}$ performs better at NLO, improvement of high tail shape

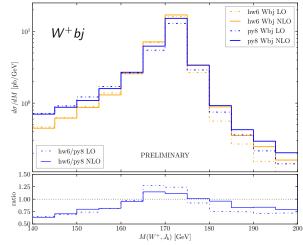
Comparison of showers: Herwig6 vs Pythia8

Also important to compare PSMCs against eachother directly.


- highlights intrinsic differences between parton showers, hadronization models
- agreement between showers <code>should</code> get better going LO \rightarrow NLO
- the more information goes into hard event, the closer the results after showering with different MCs *should* get (less freedom for PS to add decays, 1st emission from *b*-parton,...)
 - \Rightarrow the better the approximation, the better the agreement between showers should be

Herwig6 vs Pythia8

 \rightarrow distribution almost completely shaped by shower (with exception of high tail, where real emission from production contributes)


Herwig6 vs Pythia8

 \rightarrow addition of LO top decay & LO offshellness improves agreement in high tail wrt $tj{+}\mathsf{PS}$

```
\rightarrow no real improvement for LO \rightarrow NLO
```

Herwig6 vs Pythia8

 \rightarrow sizeable differences between showers remain at tails

✓ significant improvement though at resonance and in high tail going $tj \rightarrow tj + MADSPIN \rightarrow W^+ bj$ and NLO

A. Papanastasiou (DESY)

Single-top with complex-mass scheme & parton showers

CERN | 22.05.2014 | 17/18

Conclusions & Outlook

Studied:

- *t*-channel single top, with full offshell effects matched to PS
- ambiguities involved when matching complex-mass scheme to PS
- how various approximations and showers compare

Outcomes:

- writing intermediate top in event: <u>reasonable</u>, despite procedure being formally gauge-dependent
- shower effects can be large in tails of distributions e.g. $M(W^+, J_b)$
- *m*_t-sensitive distributions can show large differences between approximations (expected)

Conclusions & Outlook

Studied:

- *t*-channel single top, with full offshell effects matched to PS
- ambiguities involved when matching complex-mass scheme to PS
- how various approximations and showers compare

Outcomes:

- writing intermediate top in event: <u>reasonable</u>, despite procedure being formally gauge-dependent
- shower effects can be large in tails of distributions e.g. $M(W^+, J_b)$
- *m_t*-sensitive distributions can show large differences between approximations (expected)

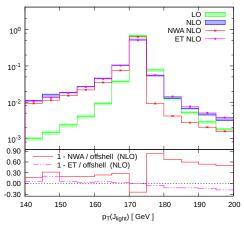
By no means a closed topic of study. Comparison to data would be both extremely interesting and useful for MC development.

 \rightarrow all this will feed into $W^+W^-b\bar{b}$ ($t\bar{t}$), main m_t -measurement process

Backup slides

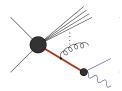
A. Papanastasiou (DESY) Single-top with complex-mass scheme & parton showers CERN | 22.05.2014 | 19/18

Setup: fixed-order & for matching to PS


Parameter setup:

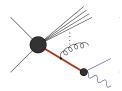
$m_t = 173.2 { m GeV}$	$\Gamma_t^{ m nlo}(\mu=m_t/2)=1.3569{ m GeV}$
$m_Z=91.1876~{ m GeV}$	$m_W=80.3980~{ m GeV}$
MSTW2008NL0 PDF set	$V_{tb}=1$

Analysis setup:


$p_T(J_b) > 25 { m GeV}$	$p_{T}(J_{\text{light}}) > 25 \mathrm{GeV}$
$ \eta(J_b) < 4.5$	$ \eta(J_{ t light}) < 4.5$
$140 < M(W^+,J_b) < 200 \; { m GeV}$	

Fixed-order $M(W^+, J_b)$, wider range

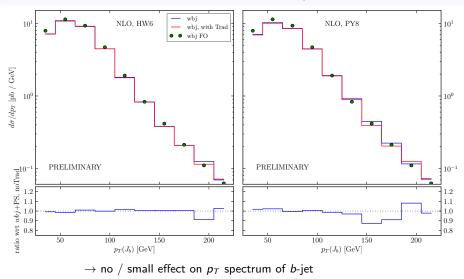
- \rightarrow ET slowly diverges from full complex-mass scheme result for higher $M(W^+, J_b)$
- \Rightarrow indicates resonant/non-resonant interferences & fully non-resonant contributions grow in importance


Radiating off intermediate tops

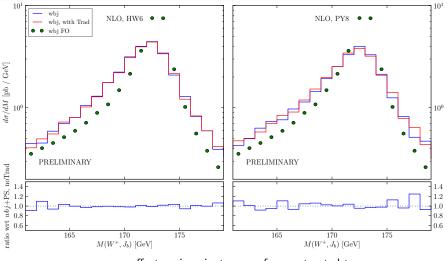
- NLO complex-mass scheme computation contains non-divergent real emissions off intermediate top propagators (potential soft singularity screened by Γ_t)
- IF top written in event, danger of double-counting emissions when shower radiates off top!

(MC subtraction terms only cure divergent real emissions)

Radiating off intermediate tops



- NLO complex-mass scheme computation contains non-divergent real emissions off intermediate top propagators (potential soft singularity screened by Γ_t)
- IF top written in event, danger of double-counting emissions when shower radiates off top!

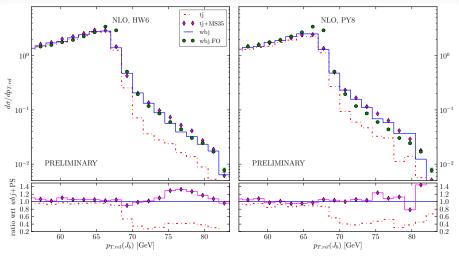

(MC subtraction terms only cure divergent real emissions)

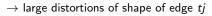
- $W^+ bj$ NLO: forbid radiation from intermediate tops [HW6: thanks to B. Webber]
- crude but effect of radiation off intermediate top is generically small

Effect of radiation from top



Effect of radiation from top




 \rightarrow e.g. no effect on invariant mass of reconstructed top

Varying x_{cut} : $p_T(J_b)$

Comparing approximations: $p_{T,rel.}(J_b)$

 \rightarrow expect same for other distributions with sharp edges: $M(J_b, l^+)$, $M_T(J_b, l^+, \nu_e)$