Hadronization systematics and top mass: preliminary studies and thoughts

Gennaro Corcella

INFN - Laboratori Nazionali di Frascati

- 1. Introduction
- 2. Update of fragmentation studies in top decays
- 3. Simulation of events with hadronized top quarks
- 4. Conclusions

Collaborators: F. Mescia and K. Tywoniuk (*b*-fragmentation) See talk by M.L.Mangano at the first meeting of the TOP LHCWG (July '12) Meeting of November '13: presented several studies on b-fragmentation in top decays, based on resummed calculations and Monte Carlo generators

Non-perturbative contributions taken from LEP and SLD data on $B\mbox{-hadron}$ production in e^+e^- collisions

b-fragmentation contributes to the systematic error on the top mass measurement (b-jet energy scale and b-tagging efficiency)

 J/ψ + lepton final states: (Kharchilava, Chierici, Dierlamm): $\Delta m_t(\text{syst}) \simeq 1.47$ GeV, with $\Delta m_t(\text{frag}) \simeq 0.51$ GeV using $m_{3\ell}^{\text{max}}$ with $J\psi \to \mu^+\mu^-$ and $W \to \ell\nu$

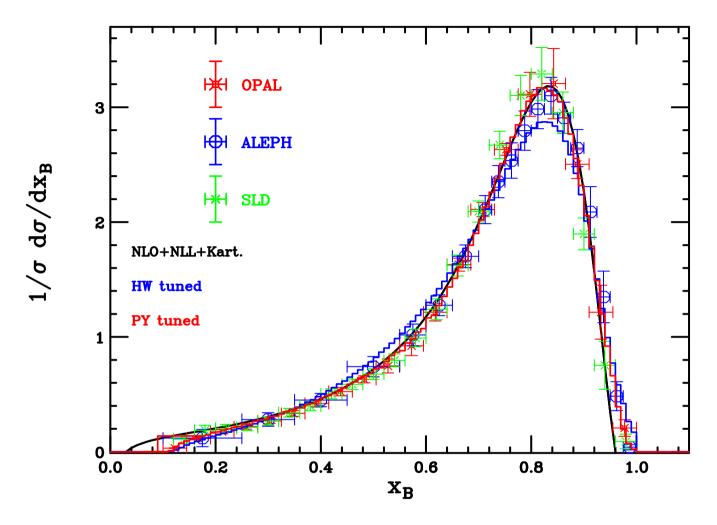
Best-fit parameters (PYTHIA) not the same, e.g. $\epsilon_b = 0.0033$ (ALEPH), 0.0055 (SLD); $\alpha_K = 11.9$ (OPAL), 13.7 (ALEPH), 10.0 (SLD)

Would be hopeful agreeing on a tuning which can be implemented in event generators

In the following, highlights of past presentation, along with criticism and updates

G. C. and V. Drollinger, NPB (2005): weakly-decaying *B*-hadron data from OPAL (mesons and baryons), ALEPH (only mesons) and SLD (mesons and baryons)

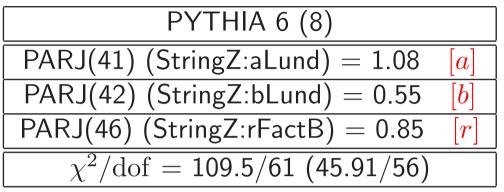
HERWIG	PYTHIA
CLSMR(2) = 0.3 (0.0)	PARJ(41) = 0.85 (0.30) [a]
DECWT = 0.7 (1.0)	PARJ(42) = 1.03 (0.58) [b]
CLPOW = 2.1 (2.0)	PARJ(46) = 0.85 (1.00) [r]
PSPLT(2) = 0.33 (1.00)	
$\chi^2/dof = 222.4/61$ (739.4/61)	$\chi^2/dof = 45.7/61 \ (467.9/61)$

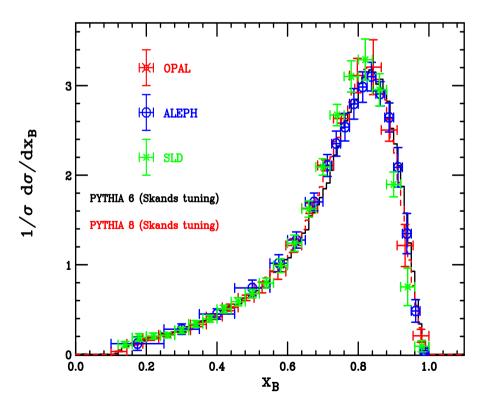

$$f_B(z) \propto \frac{1}{z^{1+brm_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

HERWIG tuned parameters describe B-hadron gaussian smearing (CLSMR), baryon/meson (CLPOW) and decuplet/octet (DECWT) ratios, mass spectrum of b-like clusters (PSPLT)

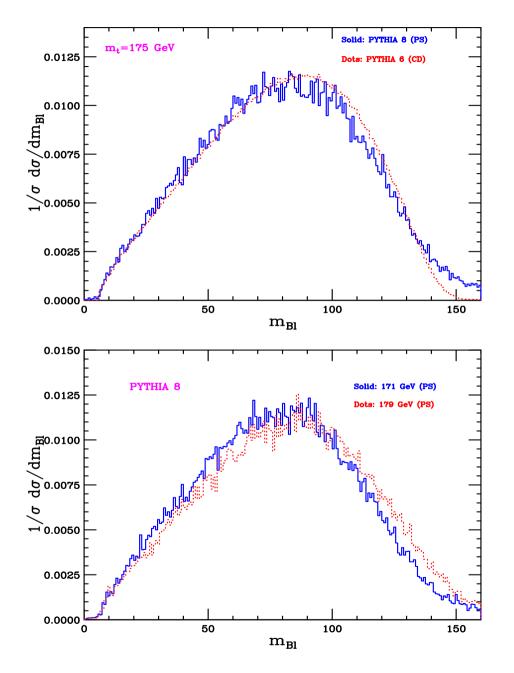
Tuning mostly driven by PSPLT, i.e. b-cluster mass spectrum $\sim M^{PSPLT}$

Our PYTHIA tuning in ATLAS jet-energy measurement (EPJ C73 (2013) 2304) and as a cross-check for top analyses


Comparing tuned HERWIG and PYTHIA



NLO+NLL calculation with Kartvelishvili model: M.Cacciari and S.Catani '01 $D_{\rm np}(x_B, \alpha) = (1 + \alpha)(2 + \alpha)x_B(1 - x_B)^{\alpha}$

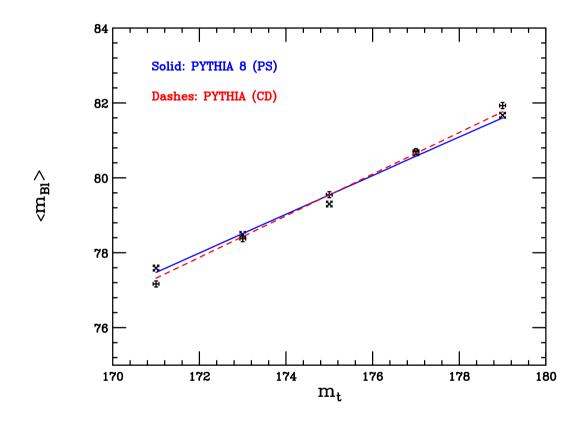

Best fit $(0.18 \le x_B \le 0.94)$: $\alpha = 17.178 \pm 0.303$, $\chi^2/dof = 46.2/53$

Drawbacks of CD tuning: a and b should be universal for all flavours, although a may be flavour-dependent (PYTHIA 8), r can vary up to 10% from default value - Suggested tuning (P.Skands):

Preliminary results with PYTHIA 8 vs. PYTHIA 6 on $m_{B\ell}$ invariant mass (K. Tywoniuk)

Mellin moments PYTHIA 8 (PS) and PYTHIA 6 (CD)

PYTHIA 8 (PS):


$m_t \text{ (GeV)}$	$\langle m_{B\ell} \rangle$ (GeV)	$\langle m^2_{B\ell} angle$ (GeV ²)	$\langle m^3_{B\ell} angle$ (GeV ³)	$\langle m^4_{B\ell} angle$ (GeV ⁴)
171	77.33	6.97×10^3	6.92×10^{5}	7.39×10^{8}
173	78.49	7.18×10^{3}	7.23×10^{5}	7.82×10^8
175	79.30	7.32×10^3	7.44×10^{5}	8.10×10^{8}
177	80.67	7.56×10^3	7.79×10^{5}	8.58×10^8
179	81.36	7.68×10^3	7.97×10^5	8.83×10^8

PYTHIA 6 (CD):

$m_t \text{ (GeV)}$	$\langle m_{B\ell} \rangle$ (GeV)	$\langle m^2_{B\ell} angle$ (GeV ²)	$\langle m^3_{B\ell} angle$ (GeV ³)	$\langle m_{B\ell}^4 angle$ (GeV ⁴)
171	77.17	6.85×10^3	6.62×10^5	6.81×10^{8}
173	78.37	7.06×10^{3}	6.94×10^{5}	7.23×10^{8}
175	79.55	7.27×10^3	7.25×10^5	7.67×10^{8}
177	80.70	7.48×10^{3}	7.56×10^5	8.12×10^{8}
179	81.93	7.71×10^{3}	7.91×10^{5}	8.61×10^{8}

Linear fits to extract m_t from $m_{B\ell}$

PYTHIA 8: $\langle m_{B\ell} \rangle \simeq -10.93 \text{ GeV} + 0.52 m_t$; $\delta = 0.168 \text{ GeV}$ **PYTHIA 6:** $\langle m_{B\ell} \rangle \simeq -24.11 \text{ GeV} + 0.59 m_t$; $\delta = 0.022 \text{ GeV}$

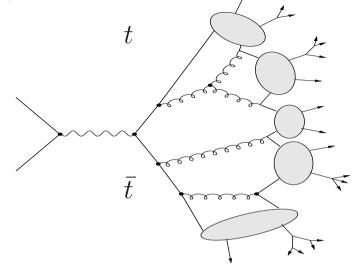
Higher statistics should shed light on the comparison

Reconstructed Monte Carlo mass m_t and top mass definitions: m_{pole} , $m_{\overline{\text{MS}}}$?

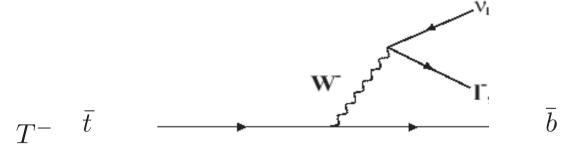
Following M.Mangano's talk at start-up meeting:

Top quarks hadronize $(T^{\pm,0}, \text{ etc.})$ and then decay, e.g., by means of the spectator model

From a given observable R extract the Monte Carlo mass $m_T^{
m MC}$

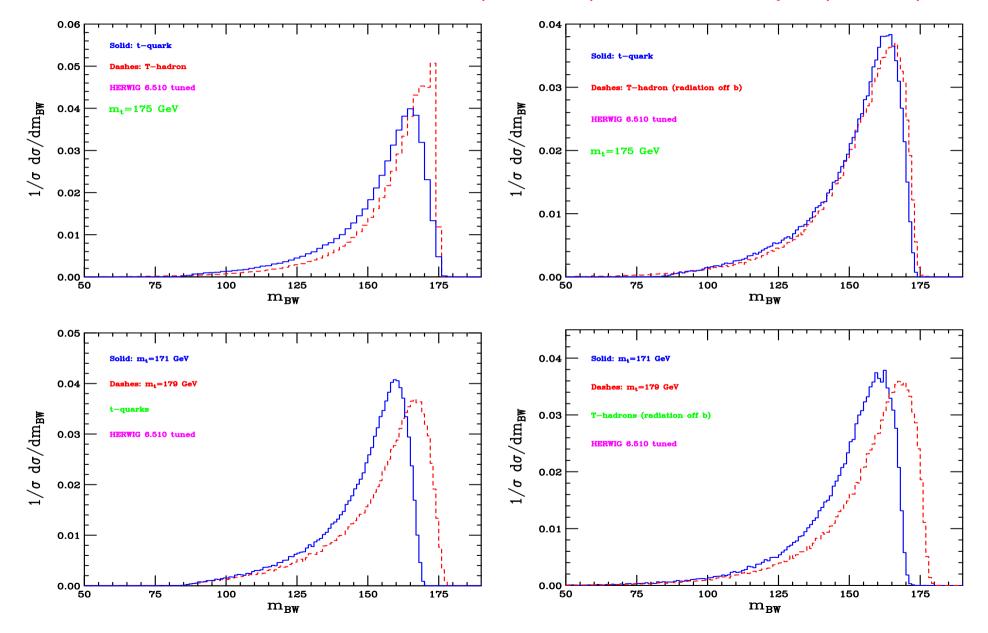

Study the same observable R with standard top samples, get m_t^{MC} and compare the extracted masses $m_T^{MC} = m_t^{MC} + \Delta m$

In the hadronized samples, the Monte Carlo mass can be related to the T-meson mass M_T and ultimately to the pole or $\overline{\mathrm{MS}}$ top-quark masses by using lattice, potential models, NRQCD, etc.


Connection between the so-obtained pole/ $\overline{\rm MS}$ mass and the Monte Carlo mass in standard analyses

Investigate the dependence of the results on the specific analysis/observable and contributions to Δm (colour flow, gluon radiation, hadron decay models)

HERWIG for $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} = 1$ TeV with top quarks hadronizing before decaying



t-flavoured mesons in the dilepton channel, i.e. $T^+ = (t\bar{d}), T^0 = (t\bar{u}), T^- = (\bar{t}d),$ etc. Spectator model decays: $T^- \to (\bar{b}d)\ell^-\bar{\nu}_\ell + X \dots p_T^2 = (p_{\bar{b}} + p_W + p_q + p_X)^2$

In some event fractions, proportional to $\Delta(Q_b^2, Q_0^2)$, the *b* quarks in *T* decays do not radiate gluons: the $(\bar{b}q)$ cluster yields a *B* meson plus a soft hadron, e.g. pions Spectator quarks likely do not radiate

Results with hadronized top quarks for BW invariant mass for fixed m_t^{MC} with and possibly without gluon radiation off the b (top plots) and varying m_t^{MC} (bottom)

Mellin moments - m_{BW} spectrum, allowing gluon emissions off the b quarks

T-hadrons:

m_t (GeV)	$\langle m_{BW} \rangle$ (GeV)	$\langle m_{BW}^2 angle$ (GeV ²)	$\langle m^3_{BW} angle$ (GeV ³)	$\langle m_{BW}^4 \rangle$ (GeV ⁴)
171	148.76	2.24×10^4	3.41×10^{6}	5.24×10^{8}
173	150.44	2.29×10^4	3.53×10^6	5.48×10^{8}
175	152.18	2.35×10^4	3.66×10^{6}	5.74×10^{8}
177	153.80	2.40×10^{4}	3.77×10^{6}	5.99×10^{8}
179	155.61	2.45×10^4	3.91×10^{6}	6.28×10^{8}

t-quarks:

$m_t \text{ (GeV)}$	$\langle m_{BW} \rangle$ (GeV)	$\langle m_{BW}^2 angle$ (GeV ²)	$\langle m_{BW}^3 angle$ (GeV ³)	$\langle m_{BW}^4 angle$ (GeV ⁴)
171	148.08	2.21×10^{4}	$3.35 imes 10^6$	5.11×10^{8}
173	149.56	2.26×10^4	3.46×10^{6}	5.32×10^8
175	151.00	2.30×10^{4}	3.56×10^6	5.54×10^8
177	152.60	2.36×10^{4}	3.67×10^{6}	5.78×10^{8}
179	153.97	2.40×10^3	3.78×10^{6}	6.00×10^{8}

Conclusions and outlook

Updates on b-fragmentation using PYTHIA 8 and comparison with PYTHIA 6, consistently tuned to LEP/SLD data

Preliminary studies of event simulations with hadronized top quarks

Perspectives:

Comparing PYTHIA 8 and HERWIG++ to estimate *b*-hadronization systematics

Extending the analysis to NLO+showers tools (POWHEG and aMC@NLO) and ultimately NNLO calculations

Tuning fragmentation parameters directly to LHC data on b-fragmentation in top decays to test factorization and quality of hadronization models

Extending analysis with hadronized top quarks, e.g. b-jets vs. B-mesons, turning spectator-quark radiation on, studying dependence on shower cutoff, to shed light on current discrepancies and possibly make a statement on the nature of the reconstructed top mass

Comparing HERWIG and PYTHIA with hadronized top quarks to test hadronization models