Top mass extraction from dilepton events

with emphasis on the

theoretical uncertainties

Alexander Mitov

Cavendish Laboratory

Based on:

Frederix, Frixione, Mitov; to appear.

Why the top mass?

- ✓ Knowing the top mass has important implications beyond immediate collider physics
 - ✓ Higgs inflation
 - √ Vacuum stability in SM and beyond
 - **√**...
- ✓ How well do we know the top mass?
 - m_{top} is not an observable; cannot be measured directly.
 - It is extracted indirectly, through the sensitivity of observables to m_{top}

$$\sigma^{\exp}(\{Q\}) = \sigma^{\operatorname{th}}(m_t, \{Q\})$$

- ✓ The implication: the "determined" value of m_{top} is as sensitive to theoretical modeling as it is to the measurement itself
- ✓ The measured mass is close to the pole mass (top decays ...)
- ✓ Lots of activity (past and ongoing). A big up-to-date review:

Juste, Mantry, Mitov, Penin, Skands, Varnes, Vos, Wimpenny '13

The message I'd like to convey: the problem is not "academic"

Example: look at the spread across current measurements

- Current World Average: m_{top} = 173.34±0.76 GeV
- ightharpoonup New CMS (I+j): m_{top} = 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV. TOP-14-001

✓ Comparable uncertainties; rather different central values!

This is possible in the context of my discussion: different theory systematics.

To me, the problem of m_{top} extraction should turn from "more precise determination" to better understanding of the theory systematics and their size.

arXiv:1403.4427

In order to properly understand and estimate the theory systematics we propose a particular observable

$$pp \to t\bar{t} + X$$

$$t \to W + b + X$$

$$W \to \ell + \nu_{\ell}$$

These are ttbar dilepton events, subject to standard cuts:

$$|\eta_{\ell}| \le 2.4 , |\eta_b| \le 2.4 ,$$

 $p_{T,\ell} \ge 20 \text{ GeV} , p_{T,b} \ge 30 \text{ GeV}$

- Construct the distributions from leptons only
- \triangleright Require b-jets [anti-k_T, R=0.5] within the detector (i.e. integrate over)

The definition of the observable possesses several important properties:

- It is inclusive of hadronic radiation, which makes it well-defined to all perturbative orders in the strong coupling,
- It does not require the reconstruction of the t and/or \bar{t} quarks (indeed we do not even speak of t quark),
- Due to its inclusiveness, the observable is as little sensitive as possible to modelling of hadronic radiation. This feature increases the reliability of the theoretical calculations.

✓ The top mass is extracted from the shapes, not normalizations, of the following distributions:

kinematic distribution

$$p_T(\ell^+)$$

$$p_T(\ell^+\ell^-)$$

$$M(\ell^+\ell^-)$$

$$E(\ell^+) + E(\ell^-) \leftarrow \text{Studied before by: Biswas, Melnikov, Schulze `10}$$

$$p_T(\ell^+) + p_T(\ell^-)$$

- ✓ Working with distributions directly is cumbersome.
- ✓ Instead, utilize the first 4 moments of each distribution

$$\sigma = \int d\sigma \qquad \mu_O^{(i)} = \frac{1}{\sigma} \int d\sigma \, O^i \qquad \mu_O^{(0)} = 1 \,, \qquad \mu_O^{(1)} = \langle O \rangle$$

Note: both are subject to cuts (or no cuts); we tried both.

- Here is how it all works:
- 1) Compute the dependence of the moments $\mu_O^{(i)}(m_t)$ on the top mass
- 2) Measure the moment
- 3) Invert 1) and 2) to get the top mass (would be the pole mass, since this is what we use)

How to compute the theory error band for $\mu_O^{(i)}(m_t)$?

ho Compute $\mu_O^{(i)}(m_t)$ for a finite number of m_t values: $m_t = (168, 169, \dots, 178) \; \mathrm{GeV}$ Then get best straight line fit (works well in this range).

Example:

- Single lepton P_T
- Subject to cuts

Errors: pdf and scale variation; restricted independent variation

$$0.5 \le \xi_F, \xi_R \le 2$$
 $\xi_{F,R} = \mu_{F,R}/\hat{\mu}$ and $\hat{\mu}$ is a reference scale

✓ There are statistical fluctuation (from MC even generation) No issue for lower moments 1M events; 30% pass the cuts.

Theory systematics

- We access them by computing the observables in many different ways.
- For a fair (albeit biased) comparison across setups and moments we use pseudodata (PD) generated by us
- Compare the systematics by comparing the top mass "extracted" by each setup from PD.

label	fixer order accuracy	parton shower/fixed order	spin correlations
1	LO	PS	-
2	LO	PS	MS
3	NLO	PS	-
4	NLO	PS	MS
5	NLO	FO	-
6	LO	FO	-

6 Setups:

3 F,R Scales:

$$\hat{\mu}^{(1)} = \frac{1}{2} \sum_{i} m_{T,i} , i \in (t, \bar{t}) ,$$

$$\hat{\mu}^{(2)} = \frac{1}{2} \sum_{i} m_{T,i} , i \in \text{ final state },$$

$$\hat{\mu}^{(3)} = m_t ,$$

All is computed with aMC@NLO (with Herwig)

Theory systematics: impact of shower effects

obs.	$m_t^{(3)} - m_t^{(5)}$	$\mid m_t^{(3)} - m_t^{\mathrm{pd}} \mid$	$m_t^{(1)} - m_t^{(6)}$	$m_t^{(1)} - m_t^{\mathbf{p}}$
1	$-0.35^{+1.14}_{-1.16}$	+0.12	$-2.17^{+1.50}_{-1.80}$	-0.67
2	$-4.74^{+1.98}_{-3.10}$	+11.14	$-9.09^{+0.76}_{-0.71}$	+14.19
3	$+1.52^{+2.03}_{-1.80}$	-8.61	$+3.79^{+3.30}_{-4.02}$	-6.43
4	$+0.15^{+2.81}_{-2.91}$	-0.23	$-1.79^{+3.08}_{-3.75}$	-1.47
5	$-0.30^{+1.09}_{-1.21}$	+0.03	$-2.13^{+1.51}_{-1.81}$	-0.67

NLO

LO

label	kinematic distribution
1	$p_T(\ell^+)$
2	$p_T(\ell^+\ell^-)$
3	$M(\ell^+\ell^-)$
4	$E(\ell^+) + E(\ell^-)$
5	$p_T(\ell^+) + p_T(\ell^-)$

label	fixer order accuracy	parton shower/fixed order	spin correlations
1	LO	PS	
2	LO	PS	MS
3	NLO	PS	
4	NLO	PS	MS
5	NLO	FO	-
6	LO	FO	

- > Setups 2,3 are anomalous (More later).
- Clearly big impact of NLO corrections (shower matters more at LO).

NOTE: proper PS study would require Pythia etc. Not done here.

Theory systematics: impact of NLO vs LO effects

obs.	$m_t^{(4)} - m_t^{(2)}$	$\mid m_t^{(4)} - m_t^{\text{pd}} \mid$	$m_t^{(3)} - m_t^{(1)}$	$\mid m_t^{(3)} - m_t^{\mathrm{pd}} \mid$	$m_t^{(5)} - m_t^{(6)}$	$m_t^{(5)} - m_t^{\text{pd}}$
1	$+1.16^{+1.43}_{-1.60}$	+0.41	$+0.79^{+1.43}_{-1.60}$	+0.12	$-1.03^{+1.22}_{-1.43}$	+0.47
2	$-2.79_{-1.65}^{+1.27}$	-1.18	$-3.05^{+1.35}_{-1.64}$	+11.14	$-7.41^{+1.64}_{-2.72}$	+15.87
3	$-0.73^{+3.21}_{-3.45}$	+0.84	$-2.18^{+3.03}_{-3.30}$	-8.61	$+0.09^{+2.42}_{-2.91}$	-10.13
4	$+1.74^{+3.27}_{-3.78}$	+0.16	$+1.23^{+3.10}_{-3.61}$	-0.23	$-0.70^{+2.79}_{-3.09}$	-0.38
5	$+0.99^{+1.42}_{-1.72}$	+0.25	$+0.70^{+1.40}_{-1.72}$	+0.03	$-1.13^{+1.23}_{-1.33}$	+0.33

PS+MS

PS

-

label	kinematic distribution
1	$p_T(\ell^+)$
2	$p_T(\ell^+\ell^-)$
3	$M(\ell^+\ell^-)$
4	$E(\ell^+) + E(\ell^-)$
5	$p_T(\ell^+) + p_T(\ell^-)$

label	fixer order accuracy	parton shower/fixed order	spin correlations
1	LO	PS	
2	LO	PS	MS
3	NLO	PS	
4	NLO	PS	MS
5	NLO	FO	
6	LO	FO	-

- > Setups 2,3 are anomalous (More later).
- Clearly big impact of NLO corrections.

Theory systematics: impact of Spin-Correlations effects

obs.	$m_t^{(4)} - m_t^{(3)}$	$\mid m_t^{(4)} - m_t^{\mathrm{pd}} \mid$	$m_t^{(2)} - m_t^{(1)}$	$m_t^{(2)} - m_t^{\rm pd}$
1	$+0.29^{+1.17}_{-1.14}$	+0.41	$-0.08^{+1.66}_{-1.96}$	-0.75
2	$-12.32^{+1.62}_{-2.13}$	-1.18	$-12.58^{+0.90}_{-0.94}$	+1.60
3	$+9.45^{+2.36}_{-2.16}$	+0.84	$+8.00^{+3.74}_{-4.26}$	+1.57
4	$+0.39^{+2.93}_{-3.16}$	+0.16	$-0.11^{+3.42}_{-4.16}$	-1.58
5	$+0.22^{+1.12}_{-1.28}$	+0.25	$-0.06^{+1.65}_{-2.07}$	-0.73

NLO+PS

LO+PS

label	kinematic distribution
1	$p_T(\ell^+)$
2	$p_T(\ell^+\ell^-)$
3	$M(\ell^+\ell^-)$
4	$E(\ell^+) + E(\ell^-)$
5	$p_T(\ell^+) + p_T(\ell^-)$

label	fixer order accuracy	parton shower/fixed order	spin correlations
1	LO	PS	
2	LO	PS	MS
3	NLO	PS	
4	NLO	PS	MS
5	NLO	FO	
6	LO	FO	-

- > NOTE setups 2,3 Huge dependence on spin correlations
- > NLO corrections make a difference.

"Best" Theory Predictions (NLO+PS+MS): choice of scale and Moment

$$m_t^{\rm pd} = 174.32 \; {\rm GeV}$$
 [...] = $\chi^2 \; {\rm per \; d.o.f.}$

[...] =
$$\chi^2$$
 per d.o.f.

$$\hat{\mu}^{(1)} = \frac{1}{2} \sum_{i} m_{T,i} , i \in (t, \bar{t}) ,$$

$$\hat{\mu}^{(2)} = \frac{1}{2} \sum_{i} m_{T,i} , i \in \text{ final state} ,$$

$$\hat{\mu}^{(3)} = m_t ,$$

	scale	i = 1	$i=1\oplus 2$	$i=1\oplus 2\oplus 3$
	1	$174.48^{+0.73}_{-0.77}[5.0]$	$174.55^{+0.72}_{-0.76}[5.0]$	$174.56^{+0.71}_{-0.76}[5.1]$
	2	$174.73^{+0.77}_{-0.80}[4.3]$	$174.74_{-0.79}^{+0.76}[4.3]$	$174.91^{+0.75}_{-0.79}[4.1]$
	3	$172.54_{-1.07}^{+1.03}[1.6]$	$172.46^{+0.99}_{-1.05}[1.6]$	$172.22_{-1.04}^{+0.95}[1.4]$
1	\oplus 2 \oplus 3	$174.16^{+0.81}_{-0.85}$	$174.17^{+0.80}_{-0.84}$	$174.17^{+0.78}_{-0.84}$

All	5 c	bser	vab	les
NL	0+	PS+	MS	

atic distribution
$p_T(\ell^+)$
$p_T(\ell^+\ell^-)$
$M(\ell^+\ell^-)$
$(\ell^+) + E(\ell^-)$
$(\ell^+) + p_T(\ell^-)$

i=1 $i=1\oplus 2$ $i=1\oplus 2\oplus 3$ scale $174.67^{+0.75}_{-0.77}[3.0] 174.67^{+0.75}_{-0.77}[3.0] 174.61^{+0.74}_{-0.77}[3.2]$ 1 $174.81^{+0.83}_{-0.80}[6.2]$ $174.80^{+0.82}_{-0.80}[6.2]$ $174.85^{+0.82}_{-0.80}[6.1]$ $172.63_{-1.16}^{+1.85}[0.2]$ $172.64_{-1.15}^{+1.82}[0.2]$ $172.58_{-1.15}^{+1.81}[0.2]$ $174.44^{+0.92}_{-0.87}$ $174.44^{+0.92}_{-0.87}$ $174.43^{+0.91}_{-0.87}$ $1 \oplus 2 \oplus 3$

Observables 1,4,5 NLO+PS+MS

scale	i = 1	$i=1\oplus 2$	$i=1\oplus 2\oplus 3$
1	$174.73^{+0.80}_{-0.79}[0.2]$	$174.73^{+0.80}_{-0.79}[0.2]$	$174.72^{+0.80}_{-0.79}[0.2]$
2	$174.78^{+0.90}_{-0.90}[0.6]$	$174.78^{+0.90}_{-0.90}[0.6]$	$174.78^{+0.90}_{-0.90}[0.6]$
3	$172.73_{-1.2}^{+2.0}[0.5]$	$172.73_{-1.19}^{+1.96}[0.5]$	$172.73^{+1.96}_{-1.19}[0.5]$
$1\oplus 2\oplus 3$	$174.46^{+0.99}_{-0.92}$	$174.46^{+0.99}_{-0.92}$	$174.45^{+0.99}_{-0.92}$

Observable 1 NLO+PS+MS

Theory systematics: Predictions

C	observable; setup	i = 1	$i = 1 \oplus 2$	$i=1\oplus 2\oplus 3$
	all; LO+PS	$187.90^{+0.6}_{-0.6}[428.3]$	$187.71^{+0.60}_{-0.60}[424.2]$	$187.83^{+0.58}_{-0.60}[442.8]$
8	all; LO+PS+MS	$175.98^{+0.63}_{-0.69}[16.9]$	$176.05^{+0.63}_{-0.68}[17.8]$	$176.12^{+0.61}_{-0.68}[18.9]$
	all; NLO+PS	$175.43^{+0.74}_{-0.80}[29.2]$	$176.20_{-0.79}^{+0.73}[30.1]$	$175.67^{+0.73}_{-0.76}[31.2]$
	all; NLO _{FO}	$174.41^{+0.72}_{-0.73}[96.6]$	$174.82^{+0.71}_{-0.73}[93.1]$	$175.44_{-0.68}^{+0.70}[94.8]$
	all; LO_{FO}	$197.31_{-0.35}^{+0.42}[2496.1]$	$197.19_{-0.35}^{+0.42}[2505.6]$	$197.48^{+0.36}_{-0.35}[3005.6]$
	1,4,5; LO+PS	$173.68^{+1.08}_{-1.31}[0.8]$	$173.68^{+1.08}_{-1.31}[0.9]$	$173.75_{-1.31}^{+1.08}[0.9]$
1,	4,5; LO+PS+MS	$173.61^{+1.10}_{-1.34}[1.0]$	$173.63^{+1.10}_{-1.34}[1.0]$	$173.62^{+1.10}_{-1.34}[1.0]$
	1,4,5; NLO+PS	$174.40^{+0.75}_{-0.81}[3.5]$	$174.43^{+0.75}_{-0.81}[3.5]$	$174.60^{+0.75}_{-0.79}[3.2]$
	$1,4,5; \text{ NLO}_{FO}$	$174.73^{+0.72}_{-0.74}[5.5]$	$174.72^{+0.71}_{-0.74}[5.6]$	$175.18^{+0.64}_{-0.71}[4.6]$
	$1,4,5; LO_{FO}$	$175.84^{+0.90}_{-1.05}[1.2]$	$175.75^{+0.89}_{-1.05}[1.2]$	$175.82^{+0.89}_{-1.04}[1.2]$

$$m_t^{\rm pd} = 174.32 \,\, \mathrm{GeV}$$

$$[...] = \chi^2 \text{ per d.o.f.}$$

	label	kinematic distribution
	1	$p_T(\ell^+)$
	2	$p_T(\ell^+\ell^-)$
	3	$M(\ell^+\ell^-)$
	4	$E(\ell^+) + E(\ell^-)$
	5	$p_T(\ell^+) + p_T(\ell^-)$
-		

Conclusions

- ✓ New developments have resurrected the interest in knowing m_{top} precisely
 - √ Vacuum Stability in SM
 - √ Higgs Inflation
- ✓ There are many dedicated hadron collider measurements.

 They return consistent values around m_{top} = 173 GeV and uncertainty (mostly on the measurement!) of below 1 GeV.
- ✓ Questions remain: can there be a significant additional theoretical systematics O(1 GeV)?
- ✓ This is not an abstract problem: m_{top} is not an observable and so is a theoretically defined concept.
- ✓ Proposed an approach, with emphasis on control over theory systematics.
 - NLO vs LO: O(1 GeV);
 - > Shower effects much smaller at NLO than at LO.
 - > Spin correlations crucial, but depend on the observable.
 - Awaiting the measurement: O(100k) events exist!
 - Adding higher moments is not a game changer
 - Unlikely to be able to use the data to tell which scale choice is 'right'.
 - > Future improvements, notably NNLO, will likely also play an important role.
 - ➤ In some cases the differences are so big that the measurements will easily tell us which way of computing things is right and which is not!