On the Theoretical Interpretation of Top Quark Mass Measurements

André H. Hoang

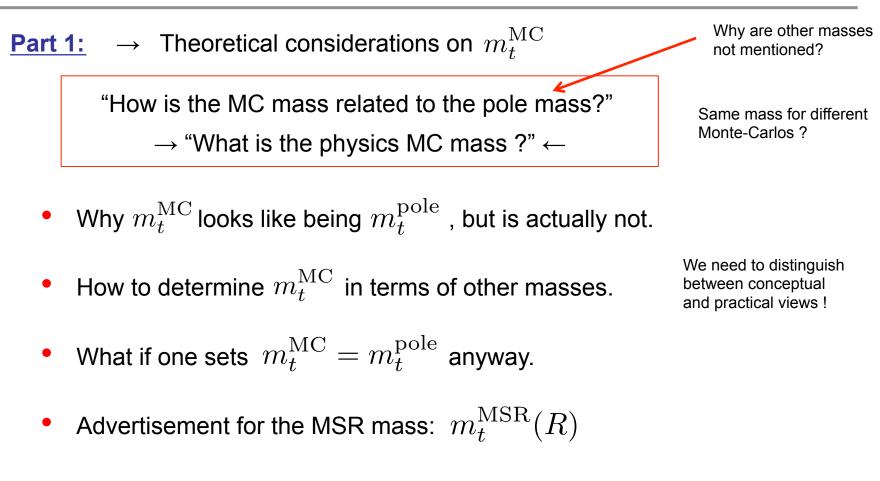
University of Vienna

CERN Theory Seminar, May 21, 2014

Motivation



Outline



- <u>Part 2:</u> \rightarrow New tools concerning tools to measure m_t^{MC}
 - Variable Flavor Number Scheme for final state jets. Full massive event shape distribution

QCD Parameters

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \mathcal{L}_{classic} + \mathcal{L}_{gauge-fix} + \mathcal{L}_{ghost}$$

$$\mathcal{L}_{\text{classic}} = -\frac{1}{4} F^A_{\alpha\beta} F^{\alpha\beta}_A + \sum_{\text{flavors } q} \bar{q}_\alpha (i D - m_q)_{\alpha\beta} q_b$$
$$D^\mu = \partial^\mu + i g T^C A^{\mu C}$$

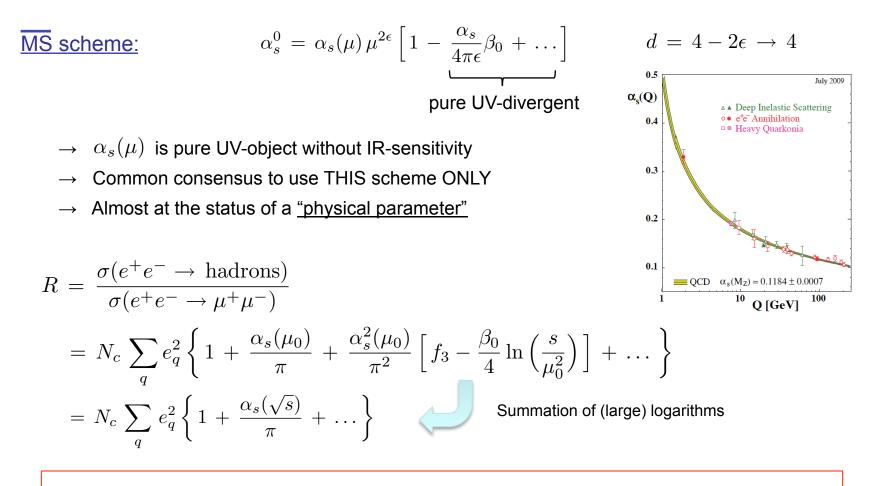
Formally $m_{\rm top}$ and α_s are couplings of the Lagrangian.

$$\begin{array}{ll} m^0_{\mathrm{top}} \,, \ \alpha^0_s & \to \mathrm{bare} \ \mathrm{UV}\mathrm{-divergent} \\ & \to \mathrm{field} \ \mathrm{theoretically} \ \mathrm{unique} \\ & \to \mathrm{pure} \ \mathrm{UV}\mathrm{-object} - \mathrm{NO} \ \mathrm{IR} \ \mathrm{dependence} \end{array}$$

$$m^R_{\mathrm{top}} \,, \ \alpha^R_s & \to \mathrm{renormalized} \ \mathrm{UV}\mathrm{-finite} \end{array}$$

- \rightarrow renormalization scheme dependent
- \rightarrow regularization scheme dependent

Strong Coupling



- \rightarrow <u>"best" or "physical parameter"</u>: captures most of the quantum corrections in its definition
- \rightarrow Common confidence: a badly behaved pert. series is considered a problem of the series and not of $\alpha_s(\mu).$

Heavy Quark Mass

$$- + \underbrace{\sum \sum \sum}_{\substack{ \sum \\ m \in \mathbb{N}}} = p - m^{0} - \Sigma(p, m^{0}, \mu)$$
$$\Sigma(m^{0}, m^{0}, \mu) = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \sum_{\substack{ \sum \\ m \in \mathbb{N}}} \left[m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right] \right]$$

- $\rightarrow \overline{m}(\mu)$ is pure UV-object without IR-sensitivity
- $\rightarrow~$ ONLY a useful scheme for $~\mu > ~m$
- → No-one considers it a <u>"physical parameter"</u> although it sums logarithms just as $\alpha_s(\mu)$

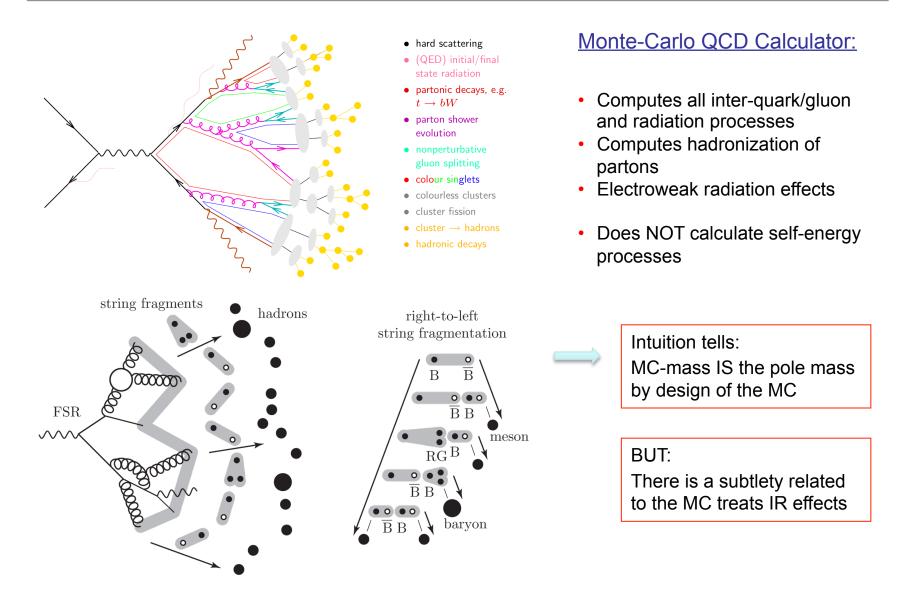
- Very energetic processes (E>>m)
- Total cross sections
- Off-shell massive quarks
- Away from thresholds/endpoints

Pole scheme:
$$m^0 = m^{\text{pole}} \left[1 - \frac{\alpha_s}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

 \rightarrow m^{pole} = <u>perturbative</u> single particle pole of <u>perturbative</u> S-matrix

- \rightarrow Absorbes all self energy corrections into the mass parameter
- \rightarrow Separation: self energy corrections \leftrightarrow inter quark/gluon interactions
- \rightarrow Many consider it as a <u>"physical parameter"</u> due to the separation property.

Heavy Quark Mass in the MC



→ Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion the same features s the MC.

Static energy of a heavy quark-antiquark pair:

Well-defined short-distance quantity for R=1/r >> 1 GeV

$$E_{\text{stat}} = 2m^{0} + 2\Sigma(m,m) + V(R)$$
$$\underbrace{\leq \sum \sum \\ = 2m^{\text{pole}} + V(R)$$

$$Q \leftarrow r \qquad \overline{Q}$$

$$\Sigma^{\text{fin}}(m,m) \sim m \left[\alpha_s + \dots \right]$$

 $V(R) \sim - R \left[\alpha_s + \dots \right]$

→ Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion the same features s the MC.

Static energy of a heavy quark-antiquark pair:

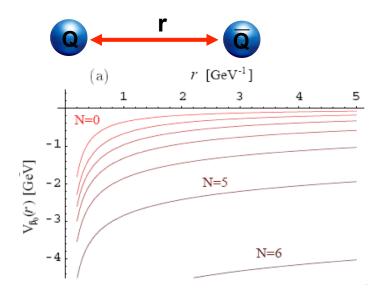
$$E_{\text{stat}} = 2m^{0} + 2\Sigma(m,m) + V(R)$$
$$\underbrace{\leq \sum_{\Sigma, \Sigma}}_{= 2m^{\text{pole}}} + V(R)$$

$$V_{\text{asym}}(R) = -R \sum_{n=0}^{\infty} \left(\frac{\alpha_s(R)}{2\pi}\right)^{n+1} \beta_0^n n!$$

Static energy is not to be a short-distance quantity - in the pole mass scheme.

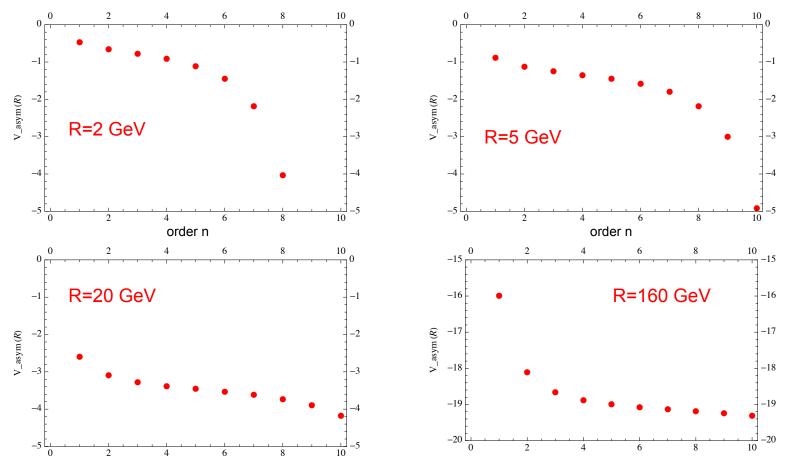
Pole mass is not a short-distance mass and has a badly behaved pert. expansion.

Well-defined short-distance quantity for R=1/r >> 1 GeV



→ "Renormalons"

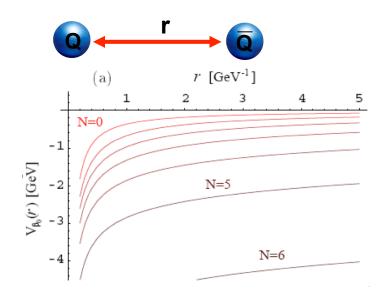
- \rightarrow How serious is the problem for a particular scale R ?
- \rightarrow Series for large R converge longer, but size of corrections at lower order larger
- ightarrow Formal ambiguity: $\Lambda_{QCD}pprox 0.5~GeV$



→ Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion the same features s the MC.

Static energy of a heavy quark-antiquark pair:

Well-defined short-distance quantity for R=1/r >> 1 GeV



$$E_{\text{stat}} = 2m^{0} + 2\Sigma(m, m) + V(R)$$

$$= 2m^{\text{pole}} + V(R)$$

$$V_{\text{asym}}(R) = -R \sum_{n=0}^{\infty} \left(\frac{\alpha_{s}(R)}{2\pi}\right)^{n+1} \beta_{0}^{n} n!$$

$$\Sigma_{\text{asym}}^{\text{fin}}(m, m) = \frac{1}{2}m \sum_{n=0}^{\infty} \left(\frac{\alpha_{s}(m)}{2\pi}\right)^{n+1} \beta_{0}^{n} n!$$

Bad behavior cancels in sum of self-energy and inter-quark effects.

→ Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion has the same features as the MC.

Static energy of a heavy quark-antiquark pair:

Well-defined short-distance quantity for R=1/r >> 1 GeV

$$E_{\text{stat}} = 2m^{0} + 2\Sigma(m, m) + V(R)$$

= $2m^{\text{pole}} + V(R)$
= $2\overline{m}(\overline{m}) + [2\Sigma^{\text{fin}}(m, m) + V(R)]$
$$V_{\text{asym}}(R) = -R \sum_{n=0}^{\infty} \left(\frac{\alpha_{s}(R)}{2\pi}\right)^{n+1} \beta_{0}^{n} n!$$

$$\Sigma_{\text{asym}}^{\text{fin}}(m, m) = \frac{1}{2}m \sum_{n=0}^{\infty} \left(\frac{\alpha_{s}(m)}{2\pi}\right)^{n+1} \beta_{0}^{n} n!$$

Bad behavior does not fully cancel in the $M\overline{S}$ scheme for R << m.

→ Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion has the same features as the MC.

Static energy of a heavy quark-antiquark pair:

Well-defined short-distance quantity for R=1/r >> 1 GeV

2

N=9

N=0

4

5

3

r [GeV-1]

$$E_{\text{stat}} = 2m^{0} + 2\Sigma(m, m) + V(R)$$

$$= 2m^{\text{pole}} + V(R)$$

$$= 2\overline{m}(\overline{m}) + [2\Sigma^{\text{fn}}(m, m) + V(R)]$$

$$= 2m^{\text{MSR}}(R) + [2\Sigma^{\text{fn}}(R, R) + V(R)]$$

$$\int_{2}^{2} \int_{1.5}^{2} \int_{1.5}^{1} \int_{0.5}^{1} \int_{0.5$$

Cancellation of bad behavior in a low-scale shortdistance mass: e.g. MSR mass.

Let's step back from the MC and consider a system which is simpler to discuss, but has for the matters of this discussion has the same features as the MC.

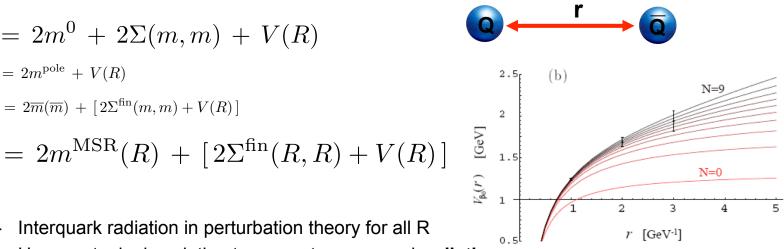
Static energy of a heavy quark-antiquark pair:

 $E_{\text{stat}} = 2m^0 + 2\Sigma(m,m) + V(R)$

 $= 2\overline{m}(\overline{m}) + [2\Sigma^{\text{fin}}(m,m) + V(R)]$

 $= 2m^{\text{pole}} + V(R)$

Well-defined short-distance quantity for R=1/r >> 1 GeV



Generic for ALL shortdistancer observables depending on the heavy quark mass !

- Interguark parton radiation in perturbation theory with an IR subtraction / cutoff.
 - This implies a corresponding IR subtraction for the guark mass.
 - Separation between mass and radiation is scheme dependent
 - scale-dep. short-dist mass \rightarrow perturbation theory stable

 $V(R): \rightarrow$ Interquark radiation in perturbation theory for all R

- → Uses partonic description to separate **mass** and **radiation**
- \rightarrow **pole mass** \rightarrow perturbation theory with instabilities

 $V^R(R) \equiv 2\Sigma^{\text{fin}}(R,R) + V(R)$]: $m_t^{\text{MSR}}(R) = m_t^{\text{pole}} - \Sigma^{\text{fin}}(R,R)$

Top Quark Short-Distance Masses

Total cross section (LHC/Tev):

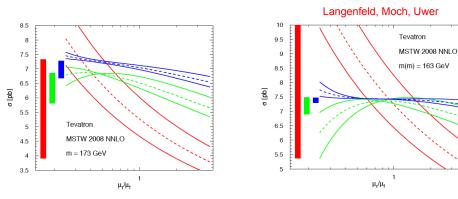
 $m_t^{\rm MSR}(R=m_t)=\overline{m}_t(\overline{m}_t)$

 This is the scheme that is used is many new physics studies (unification, vacuum stability, SUSY Higgs masses....)

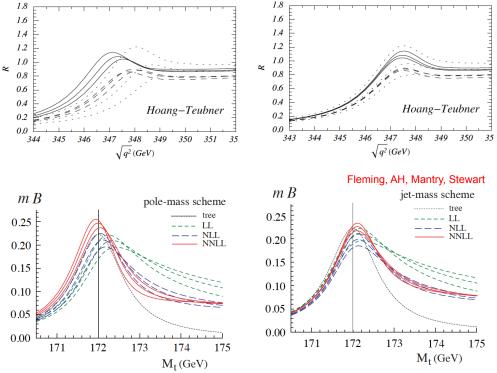
Threshold cross section (ILC):

$$m_t^{\text{MSR}}(R \sim 20 \text{ GeV}), \ m_t^{1\text{S}}, \ m_t^{\text{PS}}(R)$$

$$m_t^{\text{MSR}}(R \sim \Gamma_t), \ m_t^{\text{jet}}(R)$$



Beneke, AH, Melnikov, Nagano, Penin, Pivovarov, Teubner, Signer, Smirnov, Sumino, Yakovlev, Yeklkovski



Lessons

Inter-quark/gluon radiation can only be separated from quark selfenergy effects at the parton level.

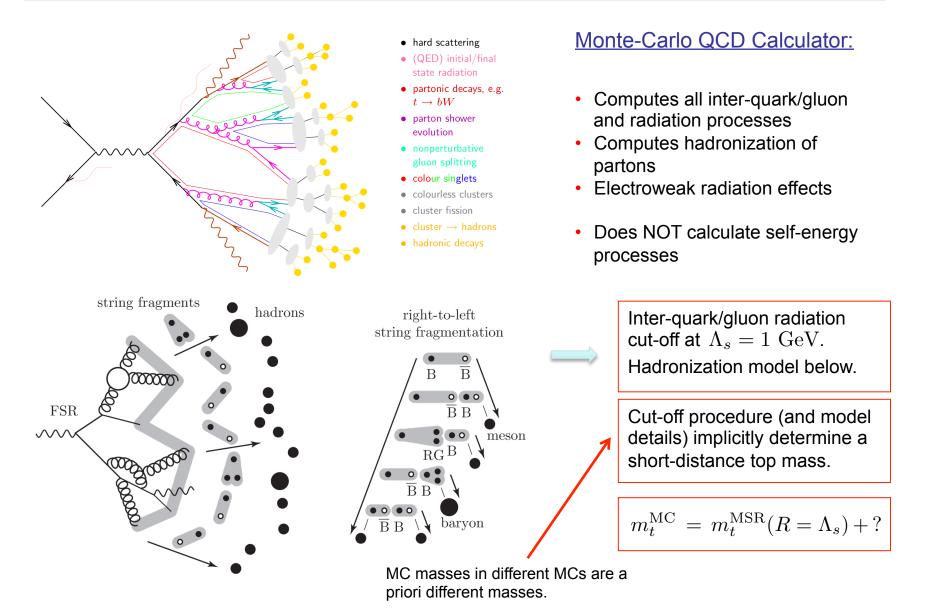
This separation can only be controlled as long as the parton description can be applied.

In the **pole mass** scheme, the parton description is imposed also for momenta at and smaller than the hadronization scale. The pole mass is therefore not physical.

The implementation of a an IR cutoff on the inter-quark/gluon radiation (and a hadronization model) implies a corresponding **short-distance mass** scheme that depends on details of the cutoff procedure.

These physical issues are not at all tied to the renormalon problem. The role of the renormalon problem is that is makes the issue numerically relevant.

Heavy Quark Mass in the MC



Static energy of a heavy quark-antiquark pair:

- \rightarrow Let's assume that there is a lattice (or MC-QCD) calculation of the static energy:
 - $E_{\text{stat}}(R) = 2m_t^{\text{lat}} + V^{\text{lat}}(R)$ · IR-stable · non-perturbative

$$= 2m^{\text{MSR}}(R) + [2\Sigma^{\text{fin}}(R, R) + V(R)]$$

$$m_t^{\text{lat}} = m_t^{\text{MSR}}(R) + \left[\frac{1}{2}V(R) - \frac{1}{2}V^{\text{lat}}(R) + \Sigma^{\text{fin}}(R,R)\right]$$
$$= \delta m_t(R) \sim \mathcal{O}(R\,\alpha_s(R),\Lambda_{\text{had}})$$

We can measure the lattice mass in terms of the MSR-mass at any scale R.

Highest precision achieved for smallest R value where pert.theory is still valid.

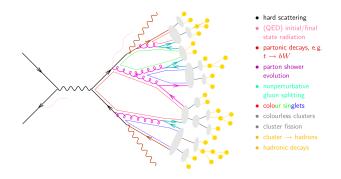
- IR-stable
- perturbative
- non-perturbative

R-independence is important cross check.

"Lattice mass is equal to the short-distance mass at a low scale up to a small correction."

$$m_t^{\text{lat}} = m_t^{\text{MSR}}(R \sim \Gamma_t) + \delta m_t(R \sim \Gamma_t)$$
$$\delta m_t(R \sim \Gamma_t) \lesssim \mathcal{O}(1 \text{ GeV})$$

- m_t^{MC} can be related to $m_t^{\mathrm{MSR}}(R)$ by comparing its predictions to analytic calculations for any mass-dependent observable **at the hadron level**
 - → R: typical physical scale of observable → $m_t^{MC} - m_t^{MSR}(R)$ can be large



Side-Remark:

This is also the way to check to which extend the MC masses of different MC generators agree (numerically).

$$m_t^{\mathrm{MC}-1} = m_t^{\mathrm{MC}-2} + \Delta m_t$$

Appears to be small.

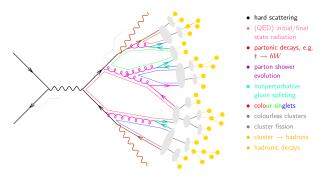
To have a more differentiated picture one should also do dedicated analyses for individual observables and not only check the outcome of different MC in the complete top mass analysis.

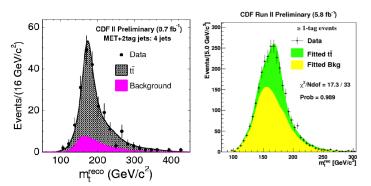
- m_t^{MC} can be related to $m_t^{\mathrm{MSR}}(R)$ by comparing its predictions to analytic calculations for any mass-dependent observable **at the hadron level**
 - $\rightarrow \mbox{ R: typical physical scale of observable} \\ \rightarrow \mbox{ } m_t^{\rm MC} m_t^{\rm MSR}(R) \mbox{ can be large}$
- Closest numerical relation between MC mass and the MSR mass happens for smallest possible R scale.
 - $\rightarrow\,$ resonance / threshold / endpoint observables
 - $\rightarrow R \sim \Gamma_t \sim \Lambda_s$

$$m_t^{\mathrm{MC}} = m_t^{\mathrm{MSR}}(R \sim \Gamma_t) + \delta m_t(R \sim \Gamma_t)$$

AH, Stewart: arXive:0808.0222

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(3^{+6}_{-2} \text{ GeV}) = m_t^{\text{MSR}}(3 \text{ GeV})^{+0.6}_{-0.3}$$





- $\rightarrow \lesssim \mathcal{O}(1 \text{ GeV})$
- \rightarrow Cannot be calculated!
- \rightarrow Can only be measured
- → It is a "conceputal" error at this time!

Remark:

The mass $m_t^{\text{MSR}}(R = \Lambda_s)$ is what comes closest to the concept of a "physical pole mass", but this concept itself is intrinsicly scheme-dependent as it is tied to the parton picture which looses meaning for quantum fluctuations below 1 GeV.

Reminder:

Everything that was said relies on the assumption that the MC is a reliable QCD calculator - and NOT JUST A MODEL.

Why did I not mention the top decay ?

The top decay does not affect anything said before. It adds a theoretical complication as makes measuring top properties dependent on the experimental procedure (and makes theory to describe this correctly more involved).

Measuring leptonic vs. hadronic decays (decay products) does not affect anything said before either. It affects other systematics.

What if you don't care about all this?

ightarrow Let's set $\,m_t^{
m MC}\,=\,m_t^{
m pole}$

A. Relate MC mass to the wrong scheme (which has a renormalon)

B. Set $\delta m_t = 0$

 \rightarrow Two mistakes, which can – depending on what is done – add up or cancel. The issue it more subtle than just the renormalon in the pole mass definition.

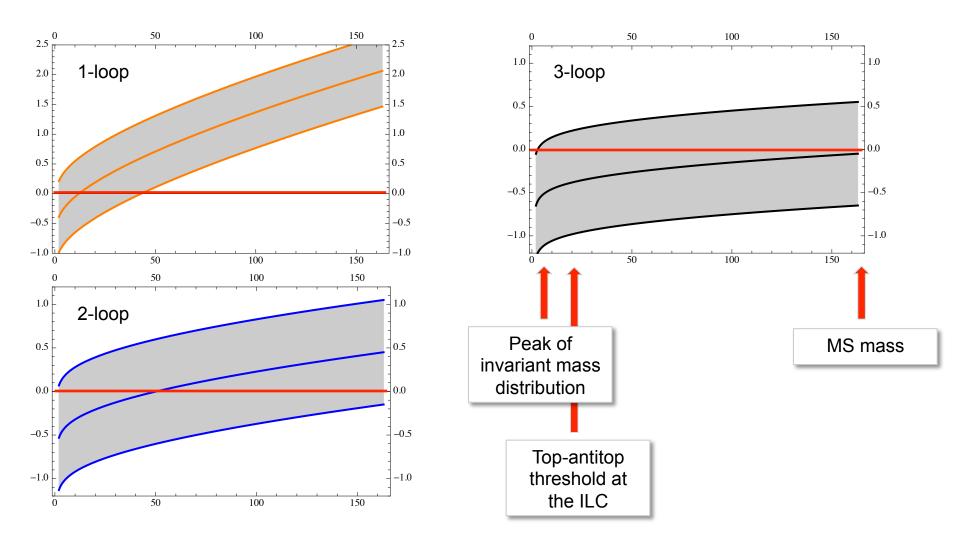
Exercise:

- 1) Set $m_t^{\text{MSR}}(3) = 173.2 \pm 0.6 \text{ GeV} \rightarrow \text{compute@3-loop} \ m_t^{\text{MSR}}(R)$
- 2) Set $m_t^{\text{pole}} = 173.2 \text{ GeV} \rightarrow \text{compute } m_t^{\text{MSR}}(R)$

3) Analyze
$$m_t^{ ext{MSR}}(R)|_{ ext{pole}} - m_t^{ ext{MSR}}(R)|$$

What if you don't care about all this?

 $m_t^{\text{MSR}}(R)|_{\text{pole}} - m_t^{\text{MSR}}(R)|$



Summary

<u>**Part 1:**</u> \rightarrow Theoretical considerations on m_t^{MC}

- Why $m_t^{
 m MC}$ looks like being $m_t^{
 m pole}$, but is actually not.
- How to determine $m_t^{\rm MC}$ in terms of other masses.
- What if one sets $m_t^{
 m MC}=m_t^{
 m pole}$ anyway.
- Advertisement for the MSR mass: $m_t^{
 m MSR}(R)$

MSbar Scheme: $(\mu > \overline{m}(\overline{m}))$ $\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$ $(R < \overline{m}(\overline{m}))$ MSR Scheme: $m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$ $m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$

 $\Rightarrow m_{
m MSR}(R)$ Short-distance mass that smoothly interpolates all R scales

- Excellent convergence of relation between MSR masses at different R values
- Excellent convergence of relation between MSR masses and other short-distance masses
- Smoothy interpolates to the MSbar mass.

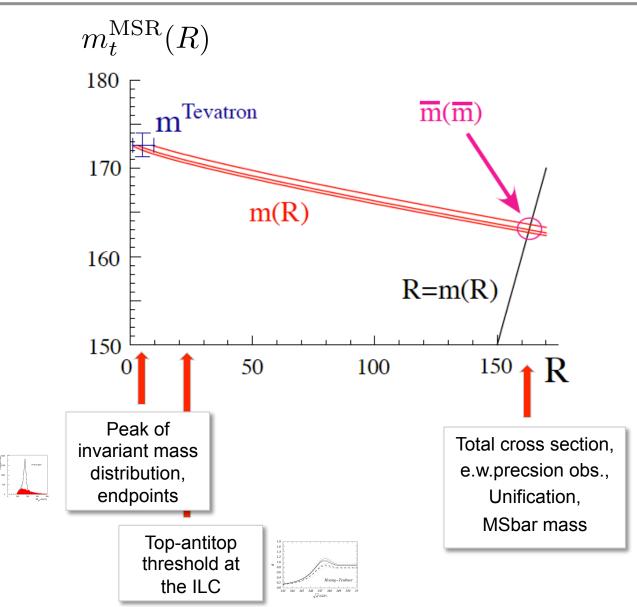
R-Evolution of MSR mass:

$$m(R) = m_{\text{pole}} - \delta m(R)$$
 $\delta m(R) = R \sum_{n=1}^{\infty} \left(\frac{\alpha_s(R)}{4\pi}\right)^n a_n$

$$R\frac{d}{dR}m(R) = -\frac{d}{d\ln R}\delta m(R) = R \sum_{n=0}^{\infty} \gamma_n^R \left[\frac{\alpha_s(R)}{4\pi}\right]^{n+1}$$
 renormalon-free !

$$\begin{split} m(R_1) - m(R_0) &= \int_{R_0}^{R_1} \frac{dR}{R} R \gamma^R [\alpha_s(R)] & \text{can be calculated numerically} \\ &\stackrel{\text{N}^k\text{LL}}{=} \Lambda_{\text{QCD}}^{(k)} \sum_{j=0}^k S_j (-1)^j e^{i\pi \hat{b}_1} \left[\Gamma(-\hat{b}_1 - j, t_1) - \Gamma(-\hat{b}_1 - j, t_0) \right] \\ &\Lambda_{\text{QCD}}^{(0)} = Re^t & S_0 = \frac{\gamma_0}{2\beta_0} & \text{imaginary parts} \\ &\hat{b}_1 = \frac{\beta_1}{2\beta_0^2} & t_{0,1} = -\frac{2\pi}{\beta_0 \alpha_s(R_{0,1})} & \text{imaginary parts} \end{split}$$

MSR Mass Definition



Theory Tools to Measure the MC mass

<u>Part 2</u>

Motivation:

- Accurate analytic QCD predictions beyond LL/LO with full control over the quark mass dependence
- Theoretical description at the hadron level

Here

- Implementation of massive quarks into the SCET framework
- VFNS for final state jets (with massive quarks)*

* In collaboration with: P. Pietrulewicz, I. Jemos, S. Gritschacher arXiv:1302.4743 (PRD 88, 034021 (2013)) arXiv:1309.6251 (PRD 89, 014035 (2013)) arXiv:1405.4860

VFNS for Inclusive Hadron Collisions

 $Q^2 = -q^2$

e.g. Deep Inelastic Scattering:

$$\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$$

- \rightarrow consider all quarks as as light (m_q < Λ)
- \rightarrow quark number operators with an anomalous dimension between proton states $\rightarrow\,$ DGLAP equations
- \rightarrow Hadronic tensor:

$$W_{\mu\nu}(Q,x) \sim \sum_{\text{partons a}} f_a(\mu) \otimes w_{\mu\nu}(Q,x,\mu)$$

 \rightarrow µ-dependence with DGLAP equations for (light) parton distribution functions

$$\frac{\partial}{\partial \ln Q^2} \begin{pmatrix} q_i(x, Q^2) \\ g(x, Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{d\xi}{\xi} \\ \times \begin{pmatrix} P_{q_i q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{q_i g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \\ P_{g q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{g g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \end{pmatrix} \begin{pmatrix} q_j(\xi, Q^2) \\ g(\xi, Q^2) \end{pmatrix},$$
(11)

$$\frac{d\alpha_s(Q)}{d\ln Q^2} = -\beta_0 \,\frac{\alpha_s^2(Q)}{(4\pi)} + \dots \qquad \beta_0 = 11 - \frac{2}{3}n_{\text{light}}$$

Q

Λ

m_{light}

VFNS for Inclusive Hadron Collisions

 $\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$

- e.g. Deep Inelastic Scattering:
 - → realistic case: massive quarks with Q > m > Λ (charm, bottom [top])
 - \rightarrow Hadronic tensor:

$$W_{\mu\nu}(m,Q,x) \sim \sum_{a=q,g,Q} f_a^{(n_l+1)}(\mu) \otimes w_{\mu\nu}(m,Q,x,\mu) \overset{\checkmark}{\underset{P}{\longrightarrow}}$$

VFNS for pdf evolution:

- DGLAP evolution for n_1 flavors for $\mu \leq m$ (only light quarks)
- DGLAP evolution for n_i +1 flavors for $\mu \ge m$ (light quarks + massive quark)
- Flavor matching for α_s and the pdfs at $\mu_m \sim m$

$$f_{q,g,Q}^{(n_l+1)}(\mu_m) = \sum_{a=q,g} F_{q,g,Q|a}(m,\mu_m) \otimes f_a^{(n_l)}(\mu_m)$$

- \rightarrow hard coefficient $w_{\mu\nu}(m,Q,x)$ approaches massless $w_{\mu\nu}(Q,x)$ for $m{\rightarrow}0$
- \rightarrow calculations of w_{µv}(m,Q,x) involves subtraction of pdf IR mass singularities
- \rightarrow full dependence on m/Q without any large logarithms

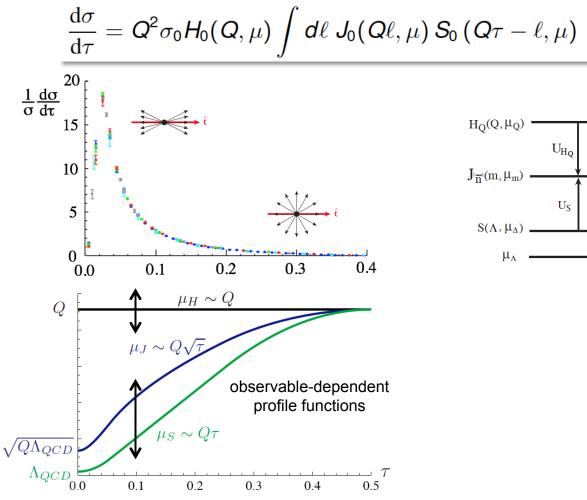
Q

m

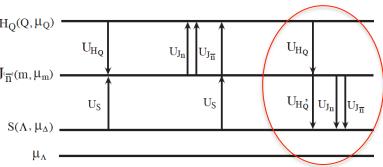
Λ

m_{light}

Factorization for Massless Quarks



Schwartz Fleming, AH, Mantry, Stewart Bauer, Fleming, Lee, Sterman



- \rightarrow evolution with n_I light quark flavors
- → consistency conditions w.r. to different evolution choices
- \rightarrow top-down evolution considered in the following

$$\left(\frac{d\sigma}{d\tau}\right)_{\text{part}}^{\text{sing}} \sim \sigma_0 H(Q,\mu_Q) U_H(Q,\mu_Q,\mu_s) \int d\ell d\ell' U_J(Q\tau-\ell-\ell',\mu_Q,\mu_s) J_T(Q\ell',\mu_j) S_T(\ell-\Delta,\mu_s)$$

VFN Scheme for Final State Jets

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \leq m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

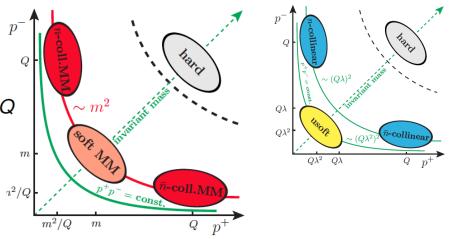
"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	p ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

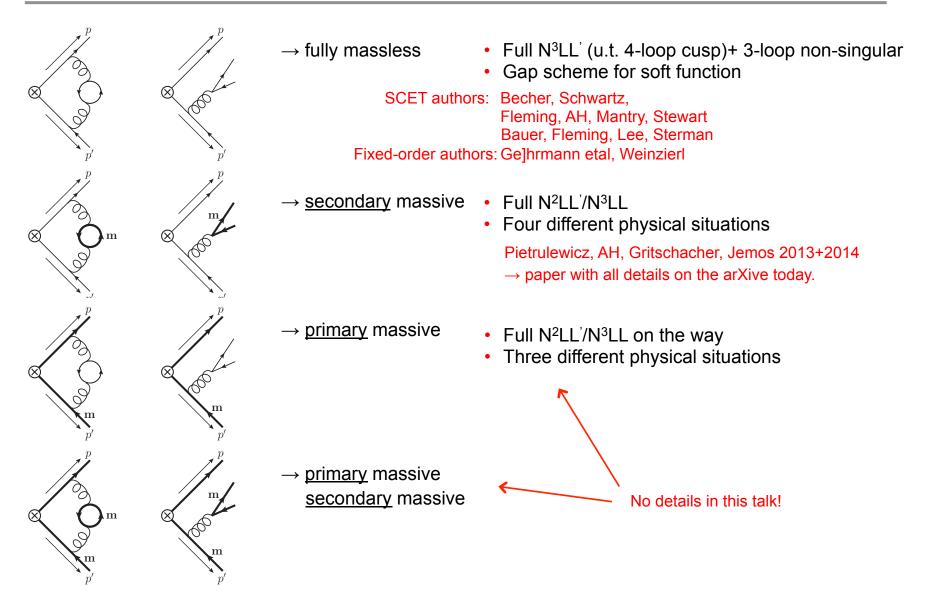
- Full mass dependence (little room for any strong hierarchies): decoupling, massless limit
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences



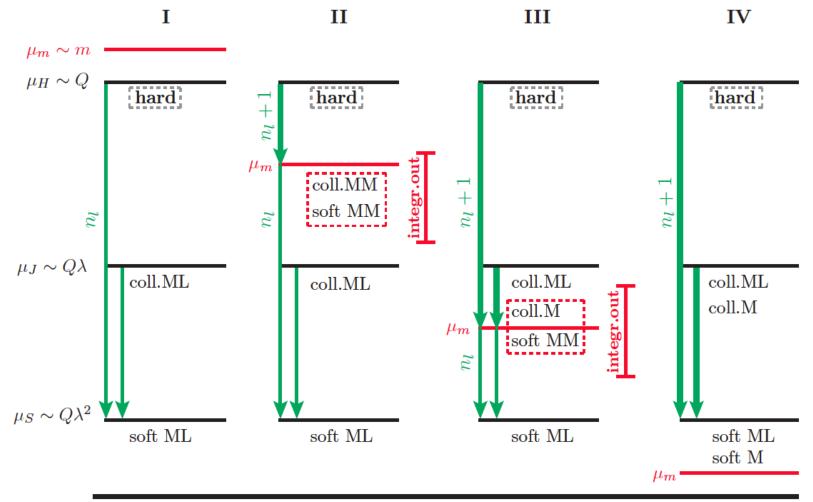
CERN Theory Seminar, May 21, 2014

arks \oplus one massive quark evolution for $\mu \le m$ as vs. Q – J – S scales

Fully Massive Thrust



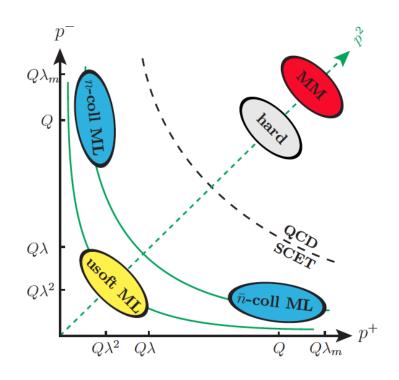
universität wien

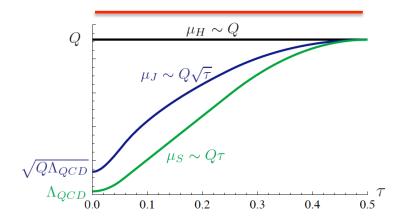


MM = mass-mode, ML = massless, M = massive

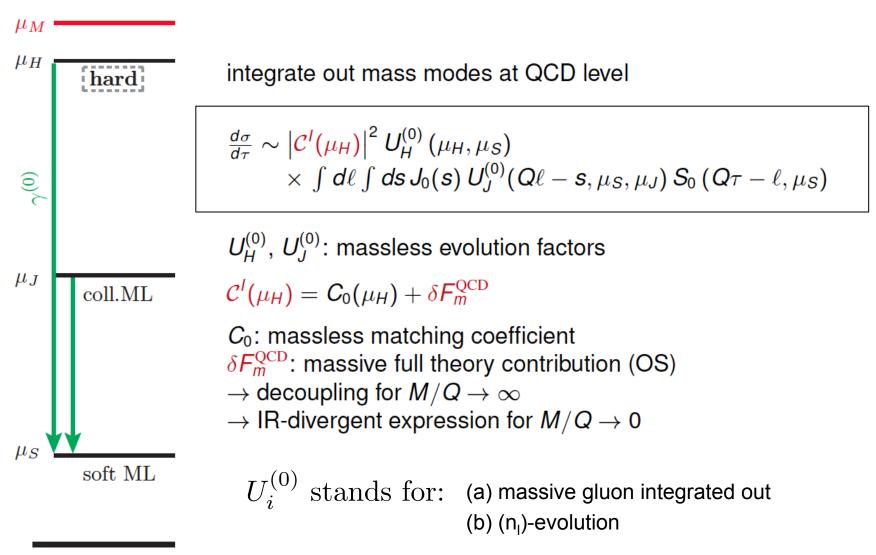
 \rightarrow See Piotr's talk.

<u>Scenario 1:</u> $\lambda_m > 1 > \lambda > \lambda^2$ (m > Q > J > S)



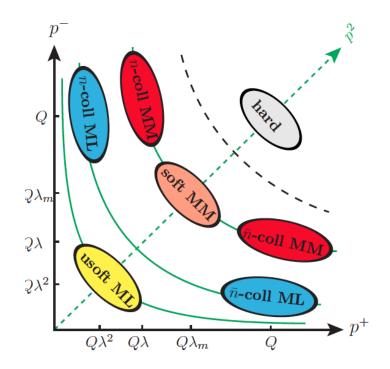


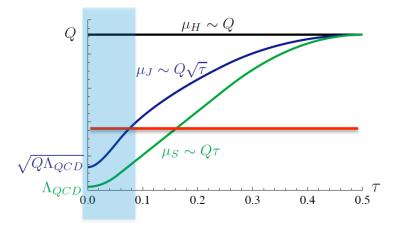
- EFT only contains light quarks
- Massive quark only in current matching coeff.
- Decoupling for $m/Q \rightarrow \infty$



ML = massless

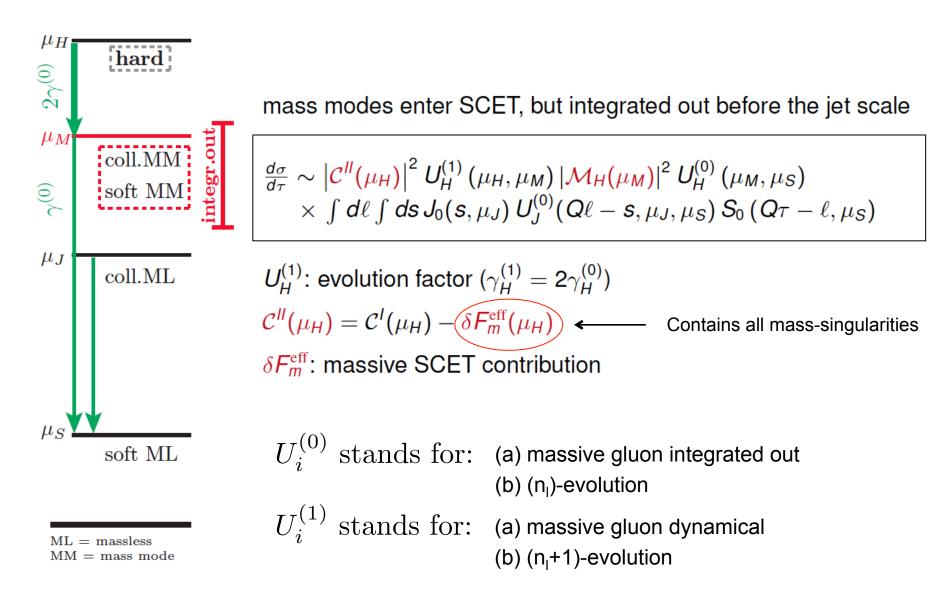
<u>Scenario 2</u>: $1 > \lambda_m > \lambda > \lambda^2$ (Q > m > J > S)



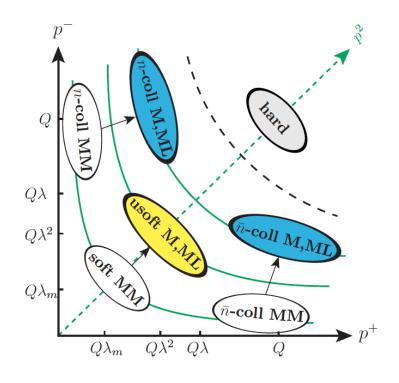


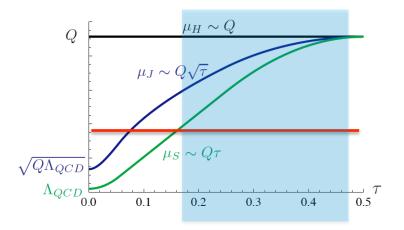
- Massive modes only virtual
- Jet and soft function as in massless case
- Hard coefficient must have massless limit
- Known Sudakov problem for massive gauge boson

Chiu, Golf, Kelley, Manohar Chiu, Führer, Hoang, Kelley

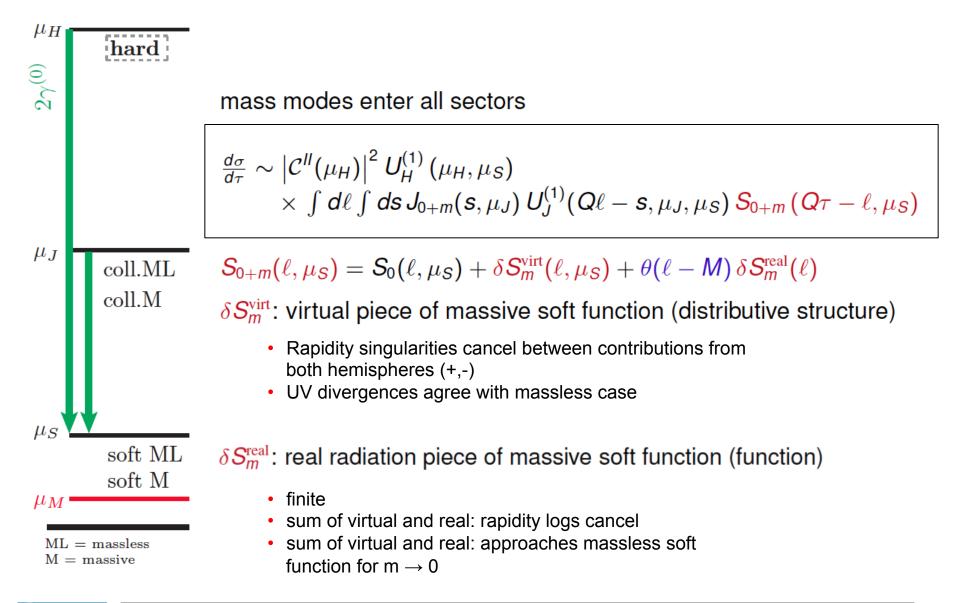


Scenario 4: $1 > \lambda > \lambda^2 > \lambda_m (Q > J > S > m)$





- Current evolution unchanged w.r. to Scen. 2
- Jet function and evolution as in Scen. 2
- Massive and massless coll. modes same sector
- Massive and massless soft modes same sector
- Hard coefficient, jet and soft function must have massless limit
- All RG-evolution for (n₁+1) flavors



Consistency Conditions: Threshold Corrections

Important role of consistency relation: soft - jet - hard for scenario III



alternative description in bottom-up running ($\mu \sim \mu_H$):

$$egin{aligned} rac{d\sigma}{d au} &\sim \left|\mathcal{C}^{\prime\prime}(\mu_{H})
ight|^{2} \int d\ell \int d\ell' \int d\ell'' \int ds \int ds' \ & imes U_{J}^{(1)}(s-s',\mu_{J},\mu_{H}) \, J_{0}(s',\mu_{J}) \, U_{S}^{(1)}(\ell''-s/Q,\mu_{M},\mu_{H}) \ & imes \mathcal{M}_{S}(\ell'-\ell'',\mu_{M}) \, U_{S}^{(0)}(\ell-\ell',\mu_{S},\mu_{M}) \, S_{0}\left(Q au-\ell,\mu_{S}
ight) \end{aligned}$$

 $\mathcal{M}_{\mathcal{S}}(\ell,\mu_{\mathcal{M}}) = \delta(\ell) + \delta S^{\mathrm{virt}}_{m}(\ell,\mu_{\mathcal{M}})$

consistency relation: $\mathcal{M}_{\mathcal{S}}(\ell, \mu_{\mathcal{M}}) = Q |\mathcal{M}_{\mathcal{H}}(\mu_{\mathcal{M}})|^2 \mathcal{M}_{\mathcal{J}}(Q\ell, \mu_{\mathcal{M}})$

similarly:
$$U_{S}^{(1)}(\ell, \mu_{S}, \mu_{M}) = Q U_{H}^{(1)}(\mu_{M}, \mu_{S}) U_{J}^{(1)}(Q\ell, \mu_{M}, \mu_{S})$$

VFN Scheme: Bottom Production

First prelim. analysis: m=4.5, Q= 14, 22, 35, 91 GeV (NNLL_{resum} + NLO_{fixed-order}) for e+e- Thrust scen. 3 "Best" MSR mass depends on tau ! $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$ $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$ **bHQET** scen. 3 $m_t^{\mathrm{MSR}}(R(\tau))$ 10 10 Q = 14 GeVQ = 20 GeV1 1 0.1 0.1 0.01 scen. 4 0.01 0.001 scen. 4 10^{-4} 0.30 0.35 0.40 0.45 0.50 0.55 0.25 0.10 0.15 0.20 0.25 0.30 0.35 0.40 $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$ τ τ $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau}$ 10 10 Q = 35 GeVQ = 90 GeV1 1 0.1 0.1 0.01 0.01 0.001 0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.05 0.35 0.00 0.05 0.30 τ τ

Consistency with VFNS in DIS ($x \rightarrow 1$)

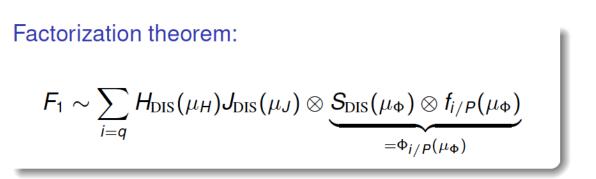
P. Pietrulewicz, AH, in preparation

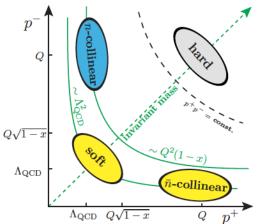
- x → 1: experimentally barely accessible (small pdfs!) but: nontrivial factorization setup → interesting as a showcase for concepts
- quite a lot of SCET literature

```
Manohar (2003), Becher, Neubert, Pecjak (2006),
```

```
Chay, Kim (2006, 2010, 2013), Fleming, Zhang (2013), ...
```

• here: $1 - x \sim \Lambda_{QCD}/Q$, conveniently: Breit frame

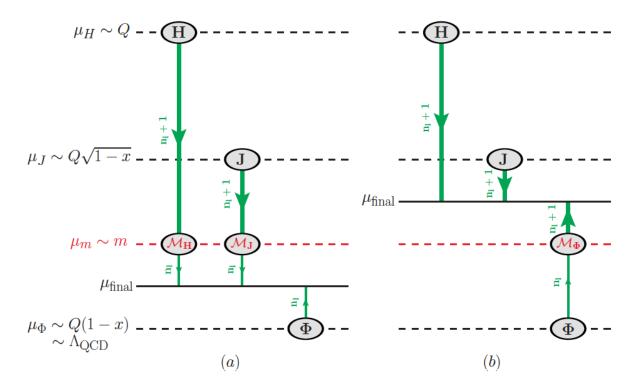




Ingredients:

- at $\mu_H \sim Q$: hard function $H_{\text{DIS}}(\mu_H) = |C(\mu_H)|^2$
- at $\mu_J \sim Q\sqrt{1-x}$: final state jet function $J_{\text{DIS}}(\mu_J)$
- at $\mu_{\Phi} \sim \Lambda_{\text{QCD}}$: pdf $\Phi_{q/P}(\mu_{\Phi})$ \leftrightarrow in SCET II: collinear initial state function $f_{q/P}(\mu_{\Phi}) \otimes$ soft function $S_{\text{DIS}}(\mu_{\Phi})$

Consistency with VFNS in DIS ($x \rightarrow 1$)



physical cross section independent of $\mu_{\rm final} \to$ (a) and (b) equivalent \to relation between evolution factors

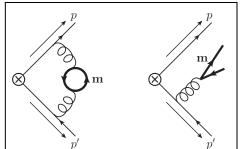
$$U_{H}^{(n_{f})} \times U_{J}^{(n_{f})} = \left(U_{\Phi}^{(n_{f})}\right)^{-1}$$
 for $n_{f} = n_{I}, n_{I} + 1$

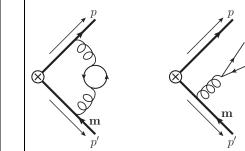
 \rightarrow relation between matching conditions

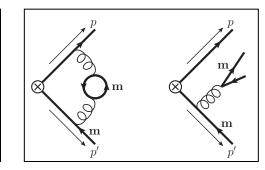
$$\mathcal{M}_H imes \mathcal{M}_J = \mathcal{M}_\Phi$$

Summary of Part 2

 \rightarrow VFN Scheme for final state jets with massive quarks







- \rightarrow Sums all large logarithms involving m (if they exist)
- \rightarrow Keeps full mass dependence of singular terms

 $\begin{array}{c} \mathsf{Q} \ \gg \mathsf{J} \gg \mathsf{S} \\ \leftarrow \leftarrow \ \mathsf{m} \ \rightarrow \rightarrow \end{array}$

- \rightarrow Fully consistent and integrable with VFNS scheme for PDFs, beam fcts, ...
- \rightarrow Allows ZVNS applications for "minimalistic" quark mass implementation

(ONLY in case if large mass logs exist !)

- → Needs non-trivial mass-dependent ME calculations if mass is of order of another scale
- → Treatment for pp collisions very soon....

