TABLE MASSIVE PARTICLE SEARCHES IN COSMIC RAYS AND IN MATTER

Bast Frankling

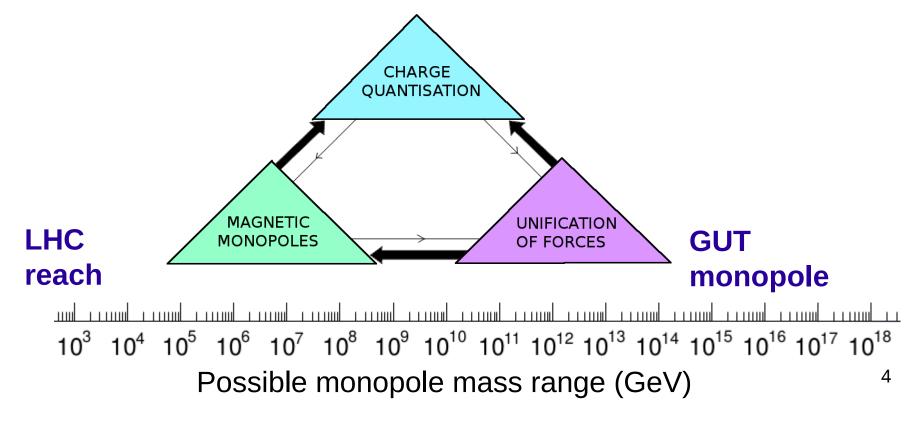
PHILIPPE MERMOD SWAPS WORKSHOP GENEVA, 11 JUNE 2014

Non-WIMP, non-decaying particles

- Assume mass > TeV, beyond collider reach
- Can be elementary or composite
- Production in early Universe
- Possibly constitute dark matter
- Possibly bind to matter

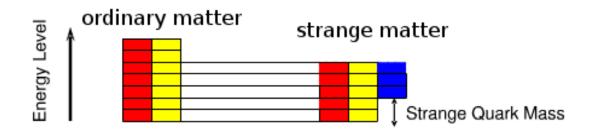
	considered	main detection principle		dark matter
	mass range	in cosmic rays	in matter	candidate
X^+, X^{++}	$< 10^{22} { m GeV}$	time-of-flight	mass spectrometry	no
$X^{-}, X^{}$	$< 10^{22} { m GeV}$	time-of-flight	mass spectrometry	$X^-p, X^{}\alpha$
X^0	$< 10^{22} { m GeV}$	nuclear recoil	mass spectrometry	yes
monopole	$< 10^{22} { m GeV}$	time-of-flight	induction	monopolium
		high ionisation		
		Cerenkov		
		nucleon decay		
Q-ball	$< 10^{22} { m ~GeV}$	high ionisation		yes
		nucleon decay		-
quark matter	$< 1000~{\rm kg}$	high ionisation	mass spectrometry	yes

Non-WIMP, non-decaying particles


- Assume mass > TeV, beyond collider reach
- Can be elementary or composite
- Production in early Universe
- Possibly constitute dark matter
- Possibly bind to matter

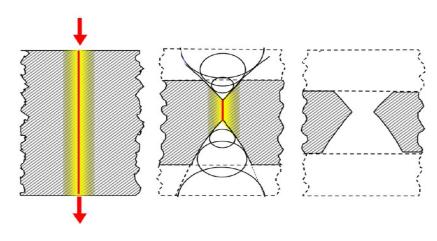
	considered	main detection principle		dark matter
	mass range	in cosmic rays	in matter	candidate
X^+, X^{++}	$< 10^{22} { m GeV}$	time-of-flight	mass spectrometry	no
$X^{-}, X^{}$	$< 10^{22} { m ~GeV}$	time-of-flight	mass spectrometry	$X^-p, X^{}\alpha$
X^0	$< 10^{22} { m GeV}$	nuclear recoil	mass spectrometry	yes
monopole	$< 10^{22} { m ~GeV}$	time-of-flight	induction	monopolium
		high ionisation		
		Cerenkov		
		nucleon decay		
Q-ball	$< 10^{22} { m GeV}$	high ionisation		yes
		nucleon decay		
quark matter	$< 1000~{\rm kg}$	high ionisation	mass spectrometry	yes

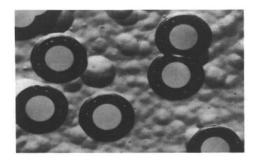
Present focus & Swiss involvement


Magnetic monopoles

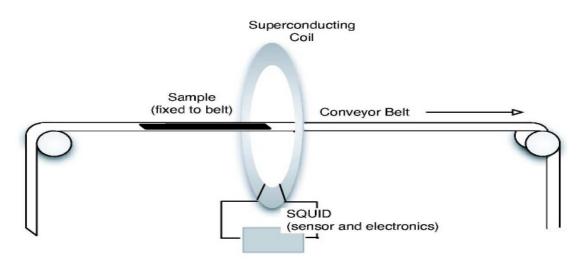
- Symmetrise Maxwell's equations
- Explain quantisation of electric charge (Dirac 1931)
 - Magnetic charge g_D equivalent to 68.5 electron charges
- Prediction of grand-unification theories ('Hooft 1974)

Strange quark matter

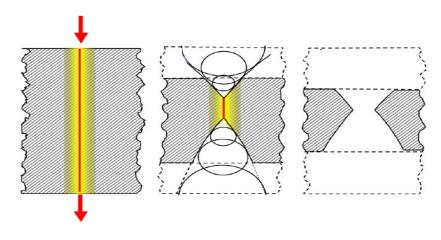

Aggregates of up, down and strange quarks could be more stable than ordinary matter



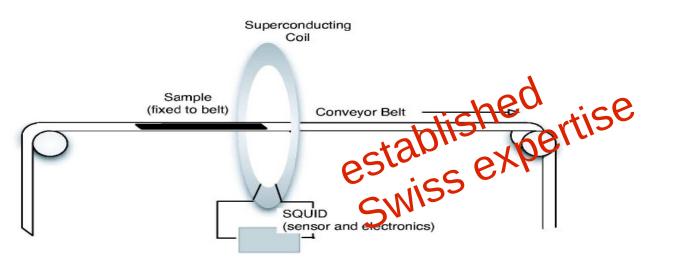
- Strangelets / quark nuggets / nuclearites (of nuclear density)
- Compact objects → dark matter without BSM physics
- Anti-quark nuggets possible
- Huge possible mass range, from GeV to solar mass
 → need variety of experimental approaches
- Electric charge $Z \simeq 0.3A^{2/3}$ (compensated by electrons)
- Atomic displacement along path for mass > 10^{-10} g


Relevant detection techniques

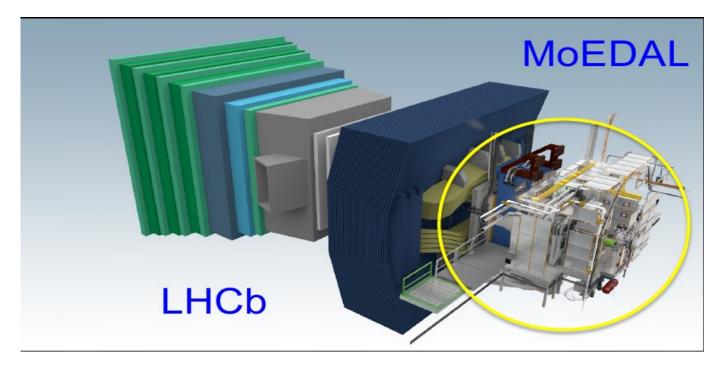
• Nuclear-track detectors (highly-ionising particles)



Induction (monopoles)


Relevant detection techniques

• Nuclear-track detectors (highly-ionising particles)

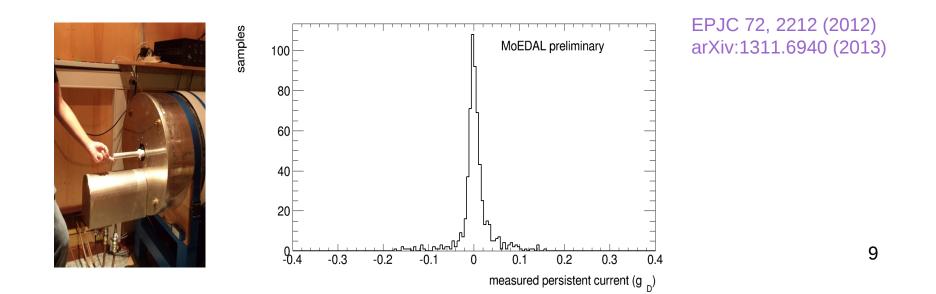


of one expertise growing expertise Swiss

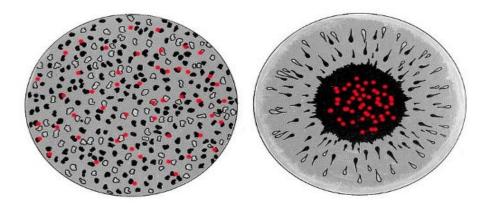
Induction (monopoles)

Highly-ionising particle searches at the LHC

Nuclear-track detectors

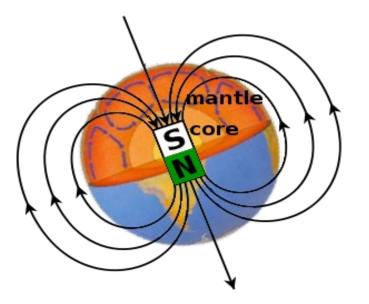


Magnetic-monopole trapper



Trapped monopoles at the LHC (work led by University of Geneva)

- Material exposed to 8 TeV collisions
 - Dedicated MoEDAL absorbing array
 - Beam pipes
- Superconducting magnetometer at Laboratory for Natural Magnetism (ETH Zürich)
 - Tests, calibrations, methods, physics measurements: done


Trapped monopoles in polar rocks (work led by University of Geneva)

Differentiation: Monopoles heavier than the

heaviest nuclei

→ absent from crust if present before the planet formed

Magnetic force exceeds gravitational force for $M < 4 \cdot 10^{14} \text{ GeV}$ (for $g = g_D$) Over geologic time, accumulation in the mantle beneath the geomagnetic poles

Search for Magnetic Monopoles in Polar Volcanic Rocks

K. Bendtz and D. Milstead

Fysikum, Stockholm University, SE 106 91 Stockholm, Sweden

H.-P. Hächler and A. M. Hirt

Department of Earth Sciences, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

P. Mermod*

Département de Physique Nucléaire et Corpusculaire, University of Geneva, 1211 Geneva, Switzerland

P. Michael

Department of Geosciences, University of Tulsa, Tulsa, Oklahoma 74104, USA

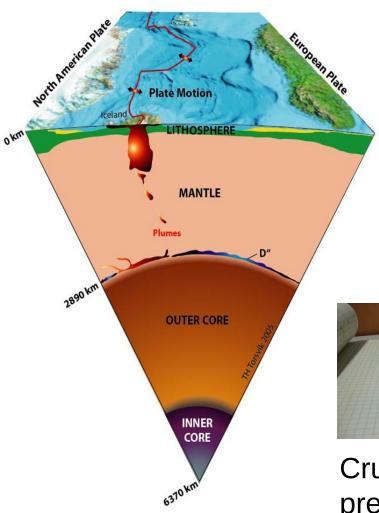
T. Sloan

Department of Physics, Lancaster University, LA1 4YW Lancaster, United Kingdom

C. Tegner

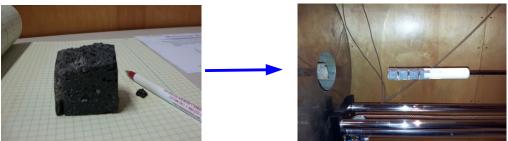
Department of Geoscience, Aarhus University, 8000 Aarhus, Denmark

S.B. Thorarinsson

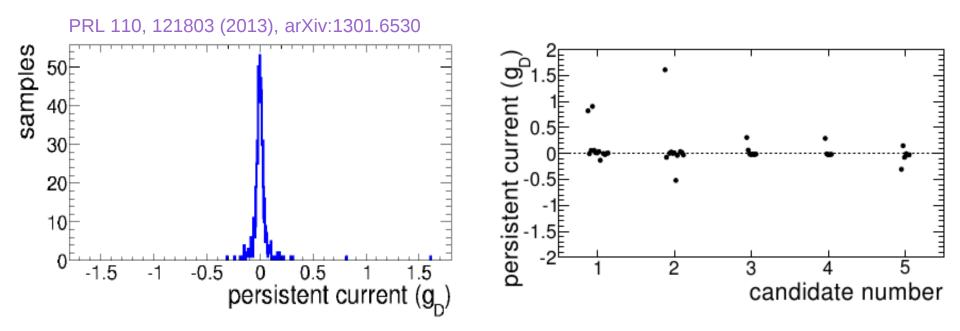

Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, 101 Reykjavik, Iceland (Received 28 January 2013; published 22 March 2013)

For a broad range of values of magnetic monopole mass and charge, the abundance of monopoles trapped inside Earth would be expected to be enhanced in the mantle beneath the geomagnetic poles. A search for magnetic monopoles was conducted using the signature of an induced persistent current following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analyzed. No monopoles were found, and a 90% confidence level upper limit of $9.8 \times 10^{-5}/g$ is set on the monopole density in the search samples.

DOI: 10.1103/PhysRevLett.110.121803

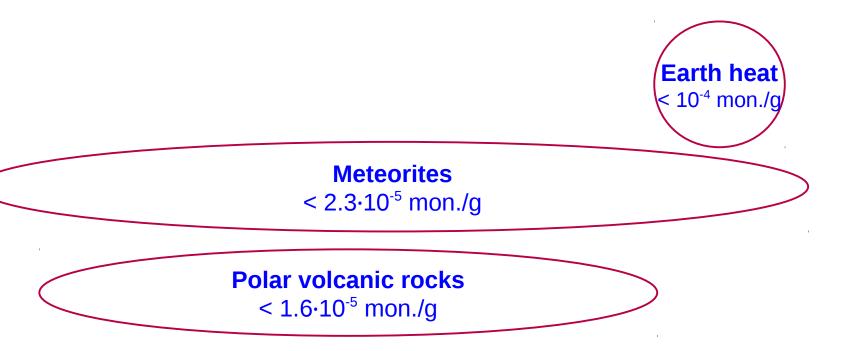

PACS numbers: 14.80.Hv, 91.25.-r, 91.35.Gf, 93.30.Li

Polar rock samples


High latitude, mantle derived

- Hotspots
- Mid-ocean ridges
- Large igneous provinces
- Isotopic content indicating deep origins

Crushed to reduce magnetisation for precise magnetometer measurement


Polar rock results

No monopole found in 24 kg of polar volcanic rocks

In simple model, translates into limit of less than
 1.6 monopole per 100 kg in the Solar System

Limits on monopole density in the Solar System

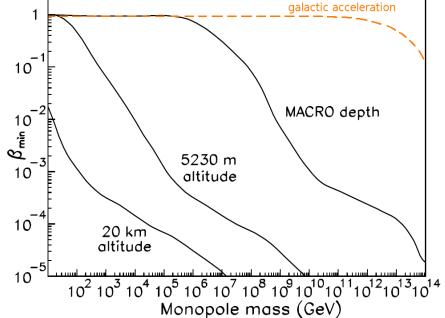
 $\frac{10^{3} \times 10^{4} \times 10^{5} \times 10^{6} \times 10^{7} \times 10^{8} \times 10^{9} \times 10^{10} \times 10^{11} \times 10^{12} \times 10^{13} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{18} \times 10^{14} \times 10^{15} \times 10^{16} \times 10^{17} \times 10^{14} \times 10^{17} \times 10^{14} \times 10^{17} \times 10^{17} \times 10^{14} \times 10^{17} \times 10^{17} \times 10^{14} \times 10^{17} \times 10^{17} \times 10^{17} \times 10^{14} \times 10^{17} \times$

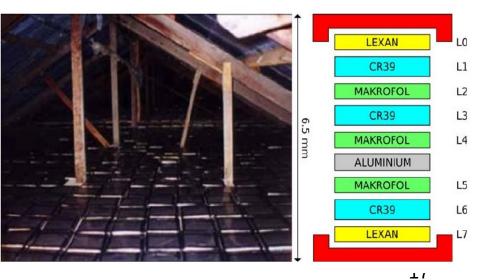
Sort-term plans with induction technique

- New magnetometer to be installed in Zürich next year
 - Conveyor belt even better for monopole searches
 - Tests and calibrations to be performed, automatic procedures to be developed
- Primordial monopole search aims
 - Improve sensitivity by factor 5-10
 - >100 kg of polar rocks
 - >100 kg of meteorites
 - Feasibility will depend on performance of new instrument

Cosmic monopoles and nuclearites: MACRO (2002)

- 1400 m underground
- 1000 m², 10 m height
- 5 years exposure
- Various detection techniques:
 - Scintillator (time-of-flight): $0.0001 < \beta < 0.01$
 - Scintillator (d*E*/dx): $0.001 < \beta < 0.1$
 - Streamer tubes: $0.0001 < \beta < 0.01$
 - Nuclear track: $0.001 < \beta < 1$
- F < 10⁻¹⁶ cm⁻²s⁻¹sr⁻¹

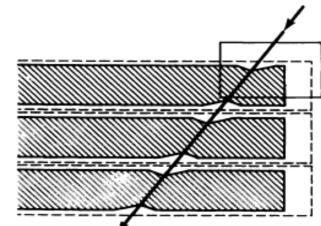

Cosmic monopoles and nuclearites: SLIM (2008)


- 5230 m altitude (Chacaltaya observatory)
- 400 m²

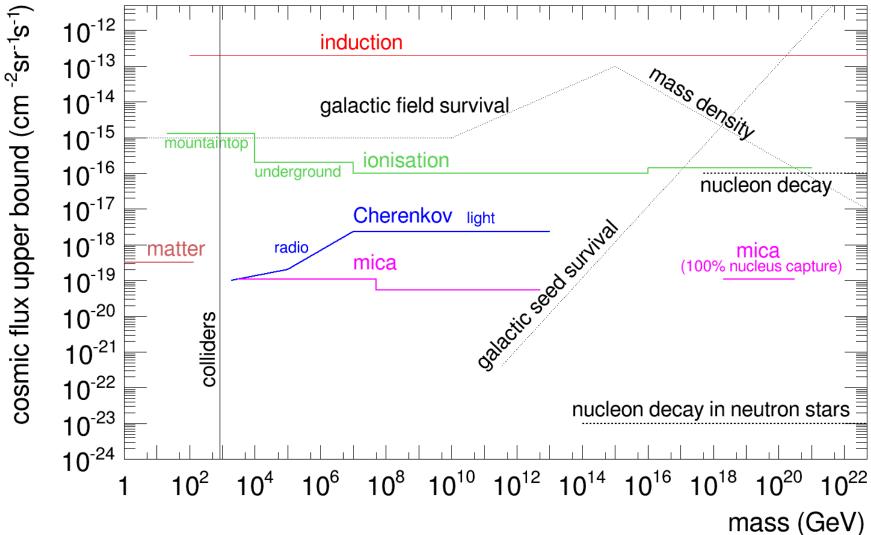
EPJC 55, 57 (2008)

- 4 years exposure
- F < 10⁻¹⁵ cm⁻²s⁻¹sr⁻¹

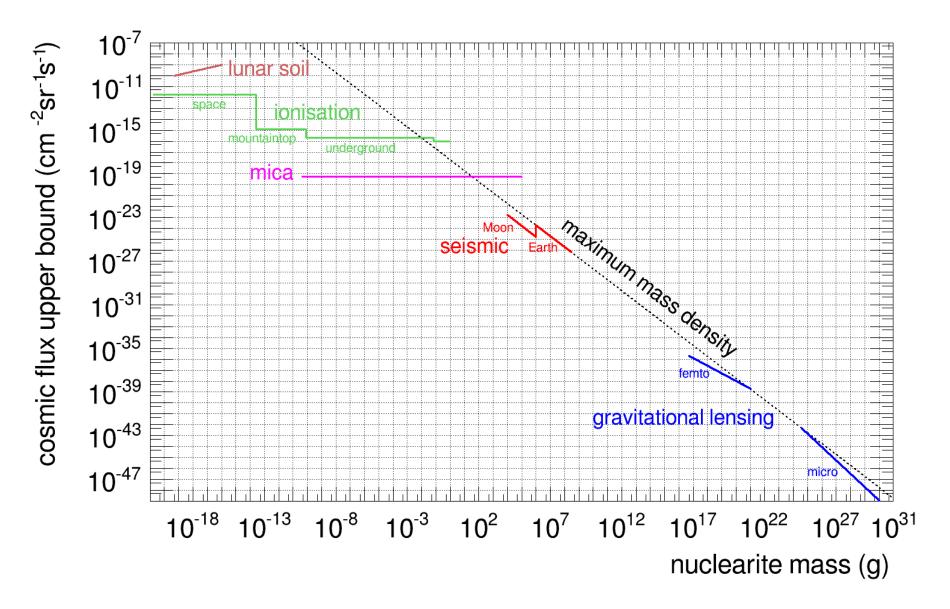
Ancient mica (1969 – 1990)


- > 500 millions years exposure time! Track guaranteed if:
- Nuclearite mass > 10^{-10} g
- Monopole $\beta > 0.9$ and $g \ge 2g_D$
- Monopole $\beta \sim 10^{-3}$ captured a nucleus on its way through the rock

Analysed total of ~40x40 cm² of very old crystals


 $F < 5.10^{-20} \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

PR 184, 1398 (1969) PRL 52, 1265 (1984) PRL 56, 1226 (1986) PRD 38, 3813 (1988) EPL 12, 25 (1990)



Cosmic flux limits – monopoles assuming $E_{kin} = 10^{13}$ GeV, expected from acceleration in galactic magnetic fields

Cosmic flux limits – nuclearites

Sort-term plans with nuclear-track detectors

- MoEDAL will acquire ~10 high-performance modern scanning microscopes
 - Sub-micron precision at > 100 cm^2 / hour
 - Even faster in low-resolution mode with automatic pattern-recognition procedure
 - Other advantages of machine vision: high contrast, triangulation-based 3D imaging, digital data storage
 - All this was not available in the 1980s!
- Heavy-ion beam calibrations
 - Brookaven NSRL beamline
 - GANIL beams provide the right ionisation to test mica response \rightarrow establish sensitivity to relativistic $g = g_D$
- Possible new cosmic-ray searches:
 10 km² array → gain factor 10
 150 m² ancient mica → gain factor 1000

WIMP dark matter with ancient mica

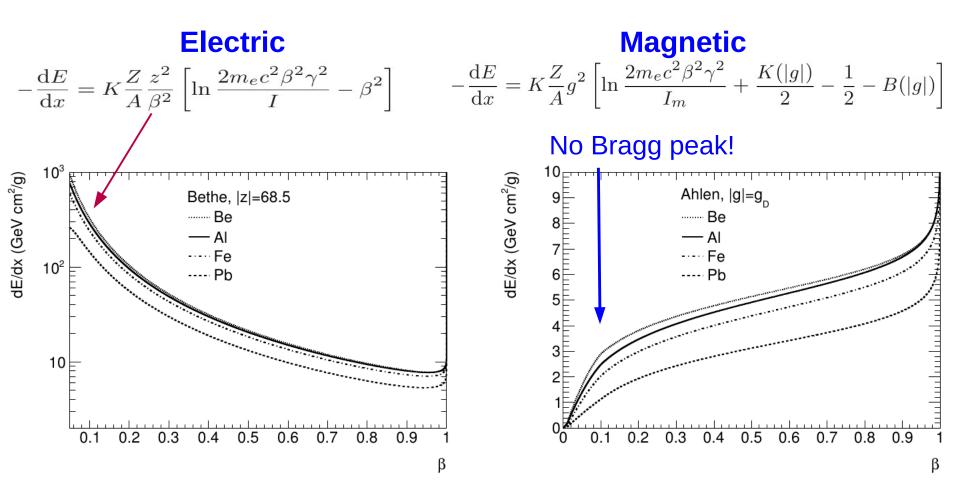
- Nuclear recoils from WIMP interactions would leave detectable $\sim 1 \ \mu m$ tracks in mica
 - Advantages: unique target nuclei (AI, K), very long exposure time, potentially probe structure of dark-matter halo
 - Disadvantages: need very good depth resolution, backgrounds from alpha and neutron-induced recoils
- Analysis of 0.1 mm² with atomic force microscopy set limit 10⁻³¹ cm² on WIMP cross section (PRL 74, 4133 (1995))
 - 150 m² mica → bring down the sensitivity to \sim 10⁻⁴⁰ cm² (region of DAMA/CoGeNT/CRESST)
 - Can this possibly be done with an optical microscope using the power of modern machine vision?

Summary

- Monopoles, *Q*-balls, strange quark matter
 - Motivated by fundamental arguments and can potentially explain dark matter
- Searches in polar rocks using superconducting magnetometers in Zürich
 - Best constraints on monopole density in material that formed the Solar System
- Proposed future search with 12x12 m² of ancient mica using modern scanners
 - Improve monopole limits by factor 1000 and establish sensitivity to relativistic singly-charged monopoles
 - Probe nuclearites in mass range 0.1-100 kg for the first time (dark-matter candidate!)
 - Possibility of completely new and independent WIMP investigation

Extra material

"MONOPOLES" IN CONDENSED-MATTER SYSTEMS


Spin ice: quasi-particles resembling monopoles (but N cannot be separated from S)

Superfluids: B* field mathematically analogous to magnetic field

- Observation of B*-pole \rightarrow example of quantum-field representation of monopole

Monopole ionisation energy loss

<u>Dirac monopole</u>: $|g_D| = 68.5 \rightarrow$ several thousand times greater d*E*/d*x* than a minimum-ionising |z|=1 particle

THE FAMOUS "CABRERA EVENT" (induction detector, 1982)

Sudden flux jump with magnitude g_D

– monopole passage... or spurious offset?

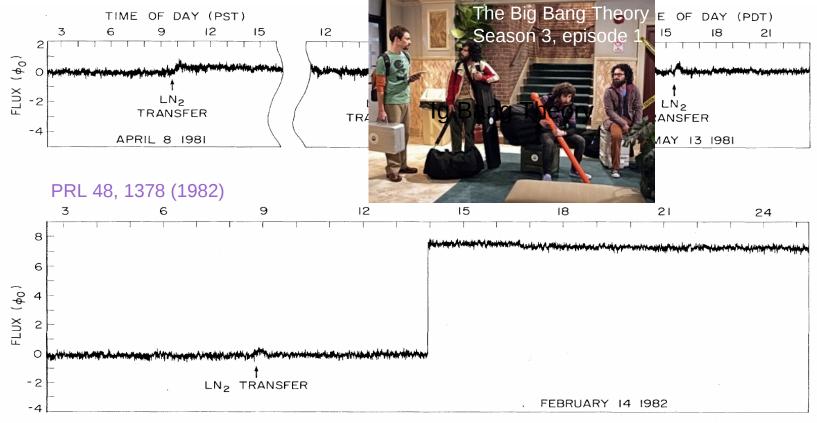
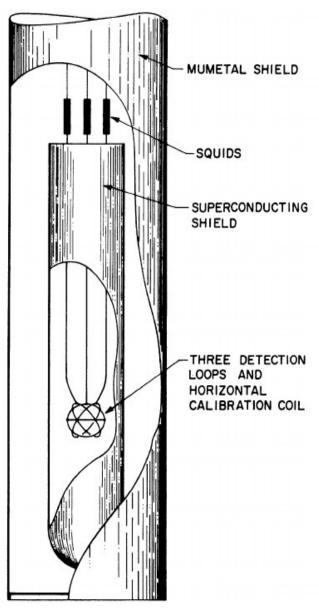



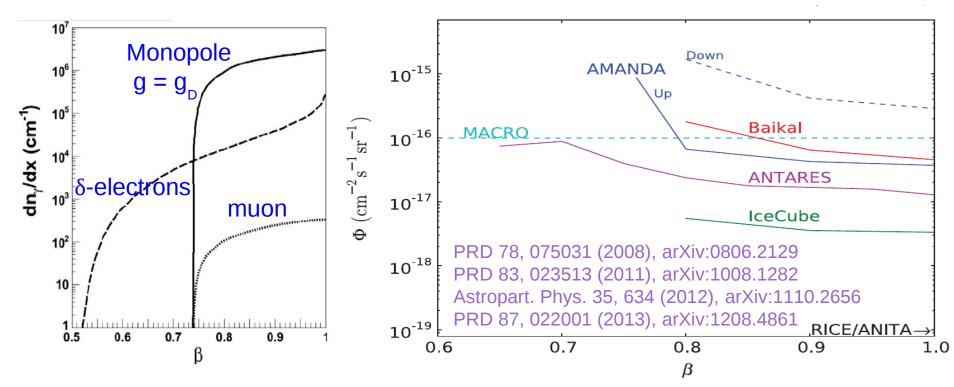
FIG. 2. Data records showing (a) typical stability and (b) the candidate monopole event.

INDUCTION DETECTORS (1982 – 1991)

- Response depends only on magnetic charge → can probe very low velocities / high masses
- ~ 1 year exposure
- Limited to ~ 1 m² area
- Need multiple loops in coincidence (initial Cabrera apparatus had only 1 loop)
- F < 2.10⁻¹³ cm⁻²s⁻¹sr⁻¹

PRL 64, 835 (1990) PRL 64, 839 (1990) PRD 44, 622 (1991) PRD 44, 636 (1991)

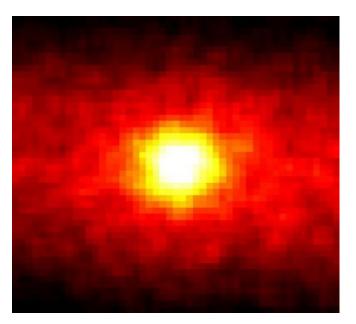
NEUTRINO OBSERVATORIES (2008 – 2013)

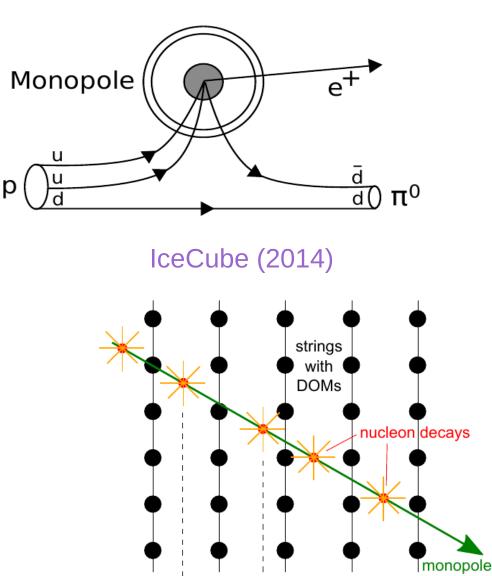


Relativistic monopoles

→ copious Cherenkov radiation

Sensitivity to upward signals

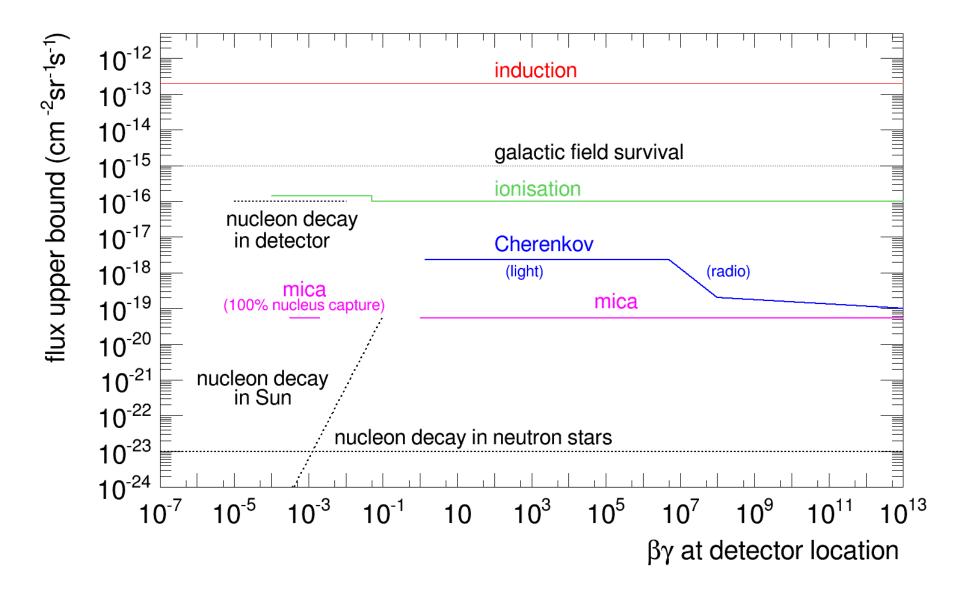

→ extreme energies



CATALYSIS OF PROTON DECAY

- GUT monopoles
- $\beta \sim 10^{-3}$
- $\sigma \sim 100 \text{ mb}$

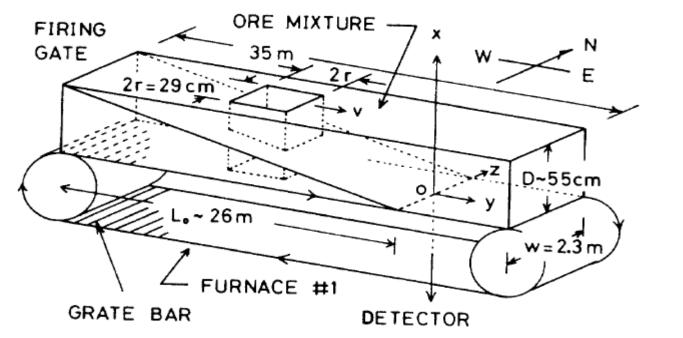
Superkamiokande (2012)



 $\sim \lambda_{cat}$

track

COSMIC FLUX LIMITS – SUMMARY 1


Iron ore (induction)

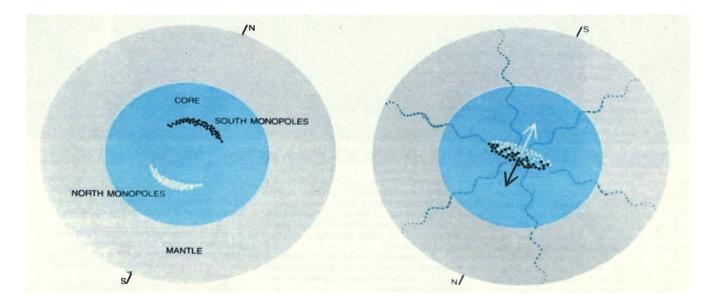
Superconducting coil placed under a furnace where iron ore Is heated to 1300 °C

- Large amounts (>100 tons) of material
- Assume ferromagnetic binding

Must also assume no binding to nuclei!

PRD 36, 3359 (1987)

EARTH HEAT (1980)


Nature 288, 348 (1980)

Heat from monopole-antimonopole annihilations during geomagnetic reversals

 \rightarrow limit $\rho < 10^{-4}$ mon./g

Must assume mass ~10¹⁶ GeV and:

- Stable dipole magnetic field when no reversal
- Monopoles and anti-monopoles both present

