

Sterile neutrinos and Planck results

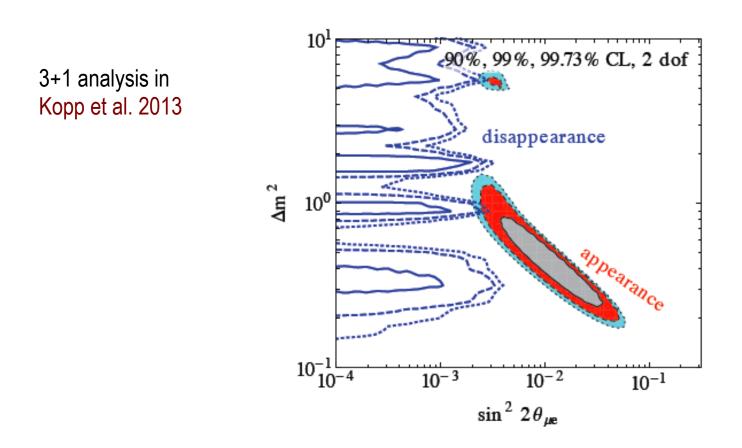
SWAPS 2014, Cartigny, 13.06.2014 J. Lesgourgues (EPFL, Lausanne & CERN, Geneva & LAPTh, Annecy)

13.06.2014

Planck implications for neutrinos – J. Lesgourgues

Neutrino anomalies

Experiment	What do they measure?	Estimate of significance
Nuclear reactors (ILL, Bugey, Gösgen)	A small deficit in the $\bar{\nu}_e$ flux from ²³⁵ U, ²³⁸ U, ²³⁹ Pu and ²⁴¹ Pu fission.	2.5 1101.2755
Galium detectors (SAGE and GALLEX)	A small deficit in the v_e -flux from ⁵¹ Cr and ³⁷ Ar decay.	3.0 σ 1006.3244
Short baseline oscillation experiments (LSND and MiniBooNE)	$\bar{\nu}_{\mu} - \bar{\nu}_{e}$ and $\nu_{\mu} - \nu_{e}$ oscillations.	3.8σ + 0σ + 3.0σ (1007.1150 +)



13.06.2014

Neutrino anomalies

Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776 Disappearance: reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

3

Light sterile Neutrino production

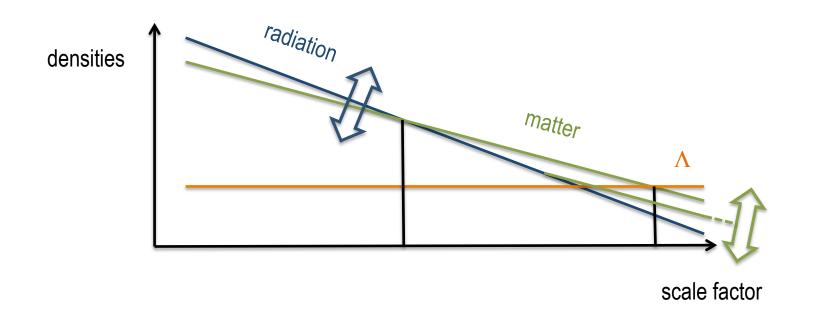
... through active-sterile neutrino oscillations

Large mixing angle leads to same number density as one active neutrino species (thermalisation)

Density can be suppressed by:

- Small mixing angle (then, no explanation of short baseline oscillations)
- Resonant oscillations related to lepton asymmetry
- Non-standard interactions with dark particles
- Low-temperature reheating (if BICEP)

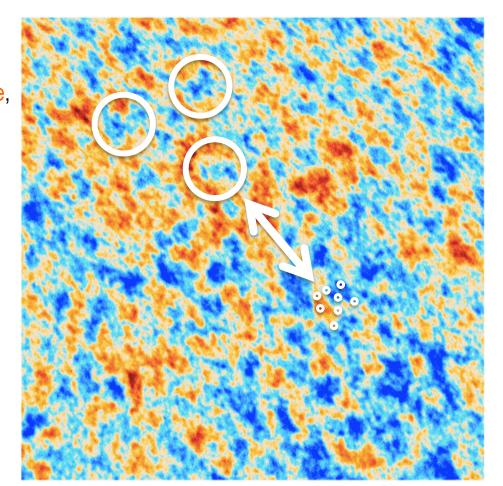
13.06.2014


Hannestad et al. 1204.5861 Mirizzi et al. 1303.5368 Hannestad et al. 1310.5926

Point of view of cosmological observations

TWO independent questions:

- Is there extra radiation on top of photons and standard neutrinos?
- Is part of the radiation content becoming non-relativistic at late times (HDM) ?


13.06.2014

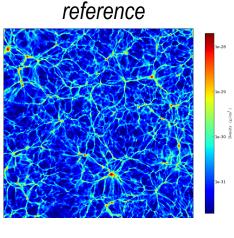
Different observables

- Is there extra radiation on top of photons and standard neutrinos?
 - CMB: peak scale relative to diffusion scale, peak amplitude patterns

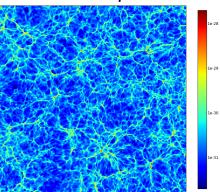
 LSS: BAO peak patterns

13.06.2014

Planck implications for neutrinos – J. Lesgourgues


Different observables

Planck implications for neutrinos – J. Lesgourgues


- Is part of the radiation content becoming non-relativistic at late times (HDM)?
 - LSS
 less dark matter fluctuations on small scales
 Probed by:
 - galaxy correlation
 - galaxy cosmic shear
 - cluster abundance
 - CMB lensing

13.06.2014

- Ly α forests in quasar spectra
- Primary CMB depletion from eISW

with hot component

First effect...

 \ldots parametrised by $\mathrm{N}_{\mathrm{eff}}$:

energy density of radiation, besides photons, in early universe, in units of the density of one standard neutrino family (omitting technical details)

 N_{eff} > 3 could be due to:

- Neutrino-antineutrino asymmetry
- Extra production of neutrinos after decoupling (e.g. from decay of exotic particle)
- Light sterile neutrinos (not seen by LEP since not weakly coupled)
- Any other massless or light relic (thermal axion, gravitinos, dark hidden sector ...)
- Unusually large background of gravity waves
- Effective dark radiation from modified gravity

13 06 2014

• Etc.

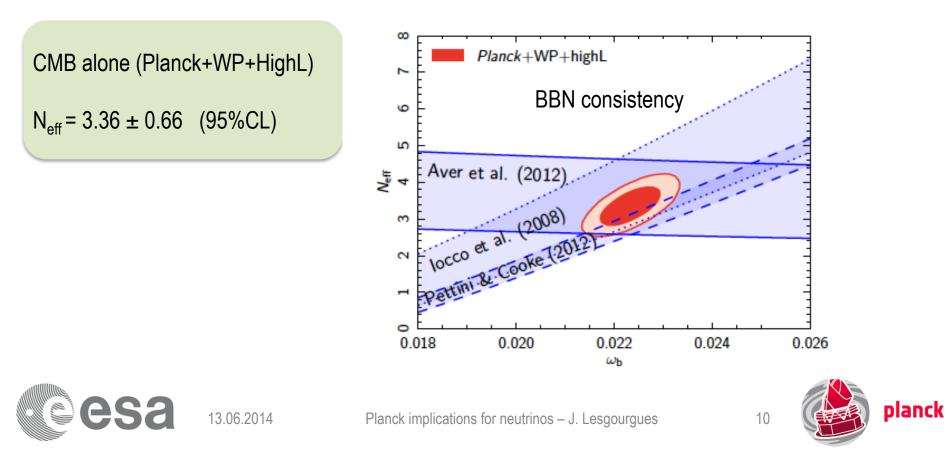
Second effect...

... parametrised by $M_{\rm veff}\,$ (eV):

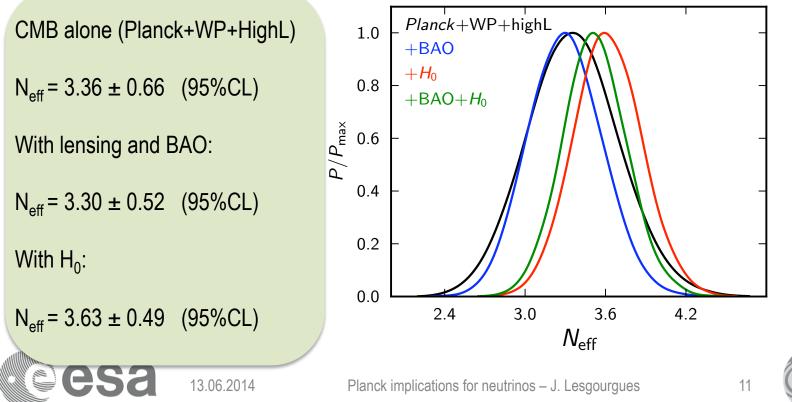
Energy density of matter behaving as "hot" instead of "cold", in late universe, divided by appropriate factor so that M_{veff} = physical mass if all hot particles have the number density as standard neutrinos

 M_{veff} > 0 could be due to:

- Neutrino masses, contributing to at least $M_{veff} > 0.06 \text{ eV}$ (NH) or 0.11 eV (IH)
- Light sterile neutrinos with masses of $O(10^{-1})$ eV at least (otherwise, undetectable)
- Any other light relic (thermal axion, gravitinos, dark hidden sector ...)

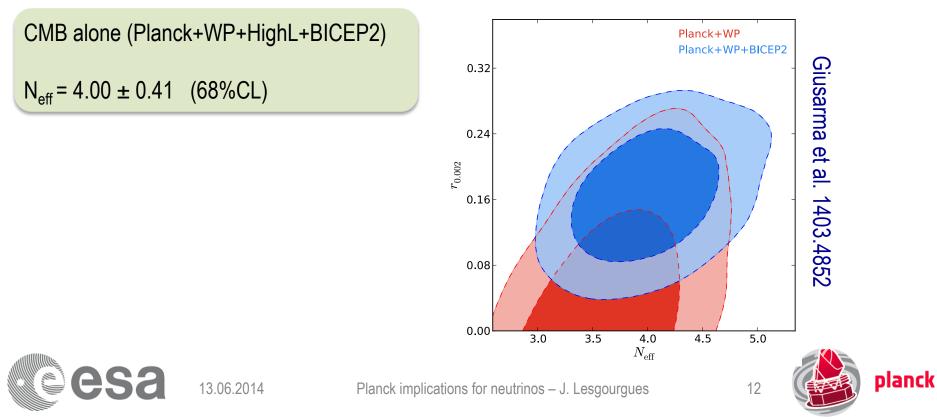

Bounds on $M_{\rm veff}$ are model-dependent

(e.g. depends on N_{eff} ; on different ways to split total mass between species with same number density; either more freedom if species have different number densities...)


Measuring N_{eff}

- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with standard value at 1 sigma

Measuring N_{eff}


- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with standard value at 1 sigma
 - Planck (+BAO) + HST : enforce higher H₀, hence also higher N_{eff}

Measuring N_{eff}

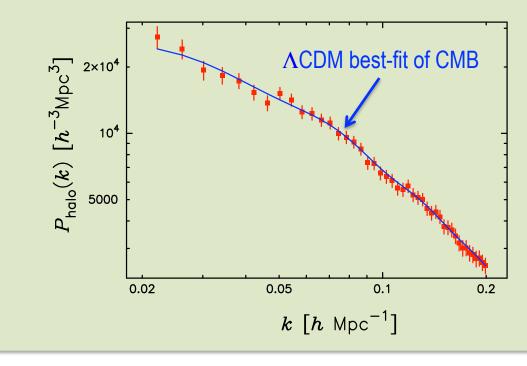
- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with standard value at 1 sigma
 - Planck (+BAO) + HST : enforce higher H₀, hence also higher N_{eff}
 - Planck + BICEP2 : to decrease r tension, also higher N_{eff}

Measuring $M_{\nu\text{eff}}$

CMB:

- Not observed by Planck (within error bars)!
- Planck + WP alone: $M_v < 0.66 \text{ eV}$ (95% CL)
- adding BAO: $M_v < 0.23 \text{ eV}$

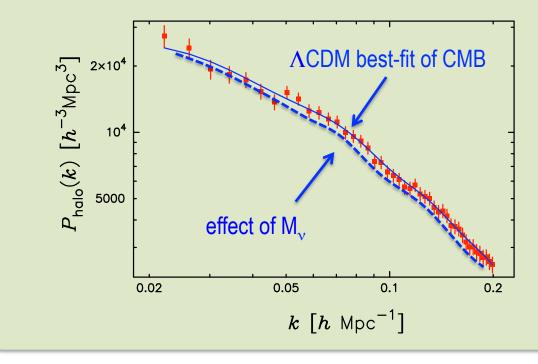
13.06.2014


Planck XVI paper, 2013

CMB + LSS:

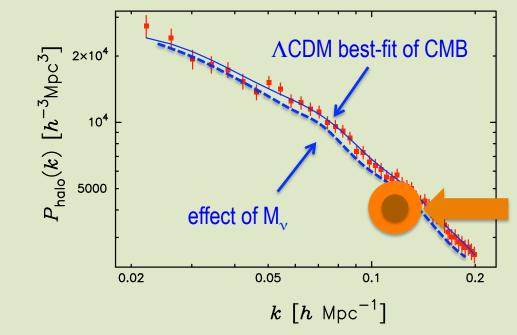
• Contradictions: compatible with $M_v < 0.23 \text{ eV}$ or pointing at ~0.3-0.4 eV

Most probably issue with systematics...



Planck implications for neutrinos – J. Lesgourgues

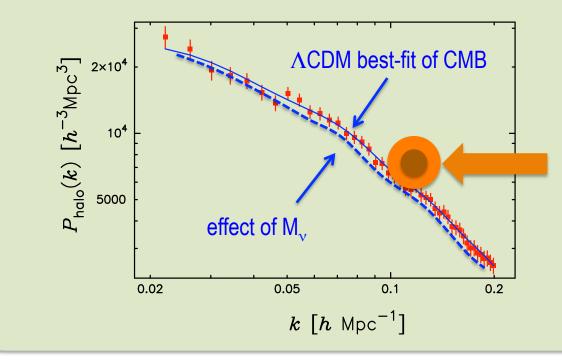
Most probably issue with systematics...



Planck implications for neutrinos – J. Lesgourgues

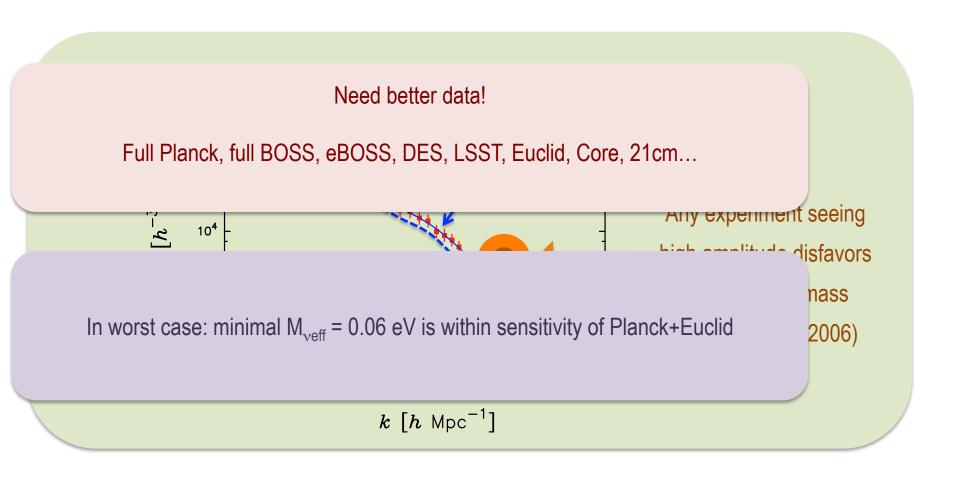
Most probably issue with systematics...

Any experiment seeing low amplitude favors high neutrino mass but conflicts CMB TT


- CMB lensing,
- (SZ) clusters,
- CFHTLens weak lensing,
- BOSS red.-space dist.

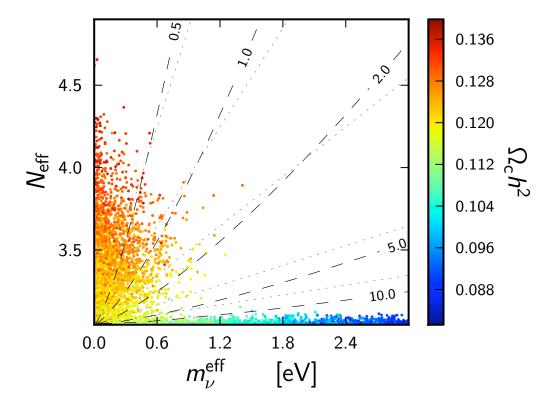
Claims for $M_{\rm v}{\sim}0.3eV-0.8eV$

Most probably issue with systematics...


Any experiment seeing high amplitude disfavors high neutrino mass:

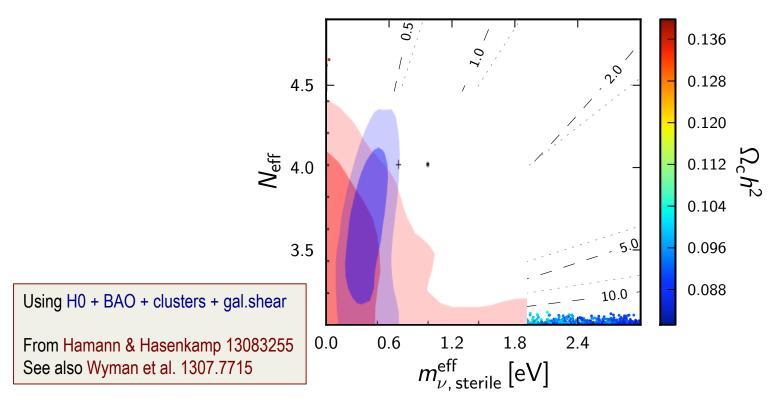
• SDSS Ly- α of 2006

17



Joint constraints

CMB only (Planck + WP + highL) analysis for 3+1 case:


13.06.2014

Planck implications for neutrinos – J. Lesgourgues

Light sterile neutrinos

CMB only (Planck + WP + highL) analysis for 3+1 case:

Planck implications for neutrinos – J. Lesgourgues

Light sterile neutrinos

Motivations: anomalies in short-baseline neutrino oscillation experiments

 10° 90%, 99%, 99.73% CL, 2 dof 3+1 analysis in Kopp et al. 2013 disappearance Δm^2 10⁰ 10⁻¹_10⁻⁴ 10^{-3} 10^{-2} 10^{-1} $\sin^2 2\theta_{\mu e}$ Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776

Disappearance: atmospheric, solar, reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

Light sterile neutrinos

Motivations: anomalies in short-baseline neutrino oscillation experiments

10 90%, 99%, 99.73% CL, 2 dof 3+1 analysis in Kopp et al. 2013 disappearance Δm^2 10⁰ 10⁻¹_10⁻⁴ 10^{-2} 10^{-3} 10⁻¹ $\sin^2 2\theta_{\mu e}$ Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776

Disappearance: reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN

Conclusions

- No conclusive evidence yet for hot dark matter component or enhanced radiation density, although a few tensions need to be understood: H₀ measurements, lensing spectrum, SZ cluster count
- Full Planck: statement on BICEP2, $\sigma(N_{eff}) \sim 0.3$, full BOSS BAO measurements
- precise answer expected from cosmic shear surveys: DES, LSST, Euclid...
 - Safest output of these experiments
 - Importance of tomography
- ... not talking of next CMB satellite, 21cm surveys, ...

