

EuCARD-2, the first year

M. Vretenar, Project Coordinator

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

EuCARD-2 = European Coordinated Accelerator Research and Development, an *Integrating Activity* co-funded by the European Commission under the *Capacity – Research infrastructure* Program

Coordinated Accelerator R&D = development of R&D topics of excellence related to accelerators for particle physics and beyond, enhancing and coordinating the individual programs of EU laboratories, national institutions and universities.

Integrating Activity = sharing ideas and resources among 40 partners from research institutions, universities and industries from 14 different countries (EU and partners)

Co-funded: EU contribution amounts to 1/3 of total cost (60% of direct cost)

Research Infrastructure = the objective is improving the European Scientific Infrastructure

4 years duration (05.2013 – 04.2017)
40 beneficiaries
14 countries (+ CERN)
23.5 M€ total cost
8 M€ EC contribution

 \rightarrow a joint collaborative effort with the EU support is the most effective way to push the limits of our technologies.

Long standing support, but budget shrinking $(3 \rightarrow 2.5 \rightarrow 2 \text{ M}\text{e}/\text{year})$, more focus on networking and less on tecnological R&D. Supplemented by DS and PP (up to 4.5 Me/year in 2011).

13 Workpackages

🕈 6 Networks

Extreme Beams – F. Zimmermann (CERN) Frontier performance of accelerators.

Low emittance rings – Y.Papaphilippou (CERN), S.Guiducci (INFN), R.Bartolini (UOXF) Synergies synchrotron light sources, storage rings, damping rings, lepton colliders.

Novel Accelerators – R. Assmann (DESY) European roadmap for plasma-based accelerators.

Energy Efficiency – M. Seidel (PSI) Energy management in accelerators.

Accelerator Applications – R. Edgecock (HUD) Accelerator technology for industry, health care, energy, ...

Catalysing Innovation – G.Anelli (CERN), P.Woodman (STFC) Transfer to society of EuCARD-2 technologies. 4 Research &Technology Developments 2 Access to Research Infrastructures

Ion Cooling Test Facility at STFC R. Preece (STFC)

HighRadMat, MagNet at CERN A. Fabich and M. Bajko (CERN)

Future Magnets – L. Rossi (CERN), P. Fazilleau (CEA) High Temperature Superconductors for 20 T magnets.

Collimator Materials – A. Rossi (CERN), J. Stadlmann

New materials for future collimators.

Innovative RF Technologies – P. Macintosh (STFC) High gradients for SC and NC accelerating cavities, RF diagnostics, photocathodes.

Novel Acceleration Techniques – V. Malka (CNRS) R&D topics on plasma wakefield acceleration.

EUCARD² 2014 Annual Meeting - DESY

The main event of the year!

- **Presentations** of the status of the different WPs
- Highlights on WP activities
- Parallel WP sessions
- Contact with the SAC

(build a common denominator for the very diverse EuCARD-2

activities)

EuCARD-2 1st Annual Meeting 19-22 May 2014, DESY Laboratory, Hamburg, Germany

The EuCARD-2 Scientific Advisory Committee (SAC) is an external advisory body composed of members with an international reputation endorsed by the Governing Board upon proposition of the EuCARD-2 Steering Committee.

This committee will receive the EuCARD-2 Yearly Activity Reports and is expected to meet at least once per year during the EuCARD-2 Annual Meeting.

The role of the committee consists in:

- Monitoring the scientific and technical activities and advising the EuCARD-2 management in case of possible failure/delays in the EuCARD-2 deliverables/milestones.
- Giving recommendation to the EuCARD-2 management about scientific/technical choices to be made throughout the project or actions to be taken with the partners and or within the Work Packages.
- On request of the EuCARD-2 management, participating to an EuCARD-2 internal review.
- Providing a short document after each SAC meeting, and reporting at the EuCARD-2 plenary or EuCARD-2 governing board meeting

Finally the scientific advisory committee is expected to participate to the strategy reflections about the continuation of EuCARD-2 within the European framework but also with non European partners.

The 2014 Accelerator Landscape

Are we approaching a saturation?

Updated Livingstone-type chart (Wikipedia 2014, uploaded by J.Nash, Imperial College)

But the field has never been so flourishing...

Figure 2.1: Total number of current personnel (blue) engaged in accelerator science activities a research institutes. The number of personnel expected in 5 years is shown in red.

TIARA, Need for Accelerator Scientists report, 2013: 3'700 people engaged in accelerator science in European research institutes, number expected to grow by 18% in 5 years.

90 years of accelerators: new challenges, new opportunities

EUCARD² Frontiers of accelerators

Specific cost vs center-of-mass energy of CERN accelerators

Complex system of "frontiers" that become more and more interrelated and/or overlapping, common to many different types of accelerators.

The EuCARD-2 collaborative effort becomes essential to optimize and develop the new technologies.

Primary goal \rightarrow reduce cost/energy *Traditional way* \rightarrow increase gradients (B, E) BUT: cost and power do not scale linearly with the gradient. Up to the final frontier: public acceptance

E-field

The gradient frontier

(the devil is in the details...)

WP10 Future Magnets: R&D towards a 20 T HTS dipole magnet, develop 10 kA cable *First results*: focus R&D on REBCO material in Roebel cables, (rare-earth based YBCO, high current densitive but mechanical issues still to be cleared)

WP12 RF: R&D new higher-gradient superconductors: bulk Nb3Sn and nanometric multilayers of high Tc SC. Support to the CLIC R&D for high-gradient NC: wakefield management, RF sources. (+ Nb sputtering, beam generation, beam diagnostics)

Energy management

Total electricity consumption (GWh/y)			
PSI	125		
ESRF	60		
ISIS	70		
KVI	4		
INFN	25		
ALBA-CELLS	20		
GSI	60		
CERN	1200		
SOLEIL	37		
ESS	317		
MAX IV	66		
DESY	150		

Efficient energy management is the key to survival in the XXIst century.

Future large projects require a power corresponding to a fraction of nuclear reactor; Going green? 200 large windmills (80m diameter, 2.5 MW, 50% efficiency) covering a 100 km distance needed to supply CLIC500 or ILC...

EuCARD-2 WP3: energy recovery from cooling, efficient klystrons, energy storage, virtual power plant, low-power transport channels.

The WP has produced the 1st EuCARD2 deliverable: **COOLING RELATED INVENTORY** by J. Torberntsson, ESS: Survey of power and cooling requirements and solutions for different EU laboratories.

Electrical power consumption (MW) for LHC and future projects (estimated)					
	normal	Stand-by			
LHC	122	89			
HL-LHC	141	101			
ILC	230				
CLIC 500 GeV	235	167			
CLIC 1.5 TeV	364	190			
		4.500			

250 !

нос рр

From

D.3 1

EuCARD2

Deliverable

Need new techniques for efficient energy utilisation and heat recovery \rightarrow impact on accelerators and on public opinion (key to public acceptance!).

- Modelling of energy flows and optimisation in time
- How can heat distribution generate an income? Low temperature heat is the main issue: LTHD, greenhouses, fish farms (integrated?), wastewater treatment,...

Pushing the limits

WP5, Extreme Beams + WP6 Low Emittance Rings Networks to discuss new ideas and create synergies.

WP5 present in the Future Circular Collider study, launched this year by CERN. R&D areas include beam optics, SC magnets, SC RF, reliability, civil engineering, impedances, synchrotron radiation, collimation, efficiency

WP5 organisation of «Beam dynamics meets magnets» workshop: more communication between communities required by new projects.

> 1st Low Emittance Ring Prize Awarded to 2 students, July 2013

WP6: series of Workshops to bring together different accelerator communities working on the design of ultra low emittance lattices (synchrotron light sources, damping rings, collider test facilities).

WP11: development of new materials for collimation (and beyond!).

EUCARD² Plasmas: the new paradigm?

I m => 100 MeV Gain Electric field < 100 MV/m

Imm => 100 MeV Electric field > 100 GV/m

... and challenges (Malka et al., Science 298, 1596 (2002)

Concept of Laser-Driven Plasma Linac : Challenges

- I PW laser at high rep rate (>100Hz): today in the best I Hz
- Plasma and vacuum chambers
- Transport between stages
- Thermal effects on the guiding structure wall
- External guiding/self-guiding
- Collimation and beam filtering
- Accelerating plasma structure: linear (<IGV/m) or non-linear (>few

GV/m to 100s GV/m)

High efficiency laser driver : today in the best 1%

WP7 (EuroNNAC) is now the main European actor in the plasma acceleration field:

- EAAC workshop in June 2013.
- The community is now preparing an application to the EU for a Design Study on "European Plasma Accelerator with High Beam Quality and Pilot Applications"

WP13 (ANAC) is progressing in its objectives:

- Compare laser plasma acceleration techniques to produce high brightness electron beams
- Ultra-fast acceleration
- Modulation of long plasmas

EUCARD² The application frontier

Nuclear Physics

newtechnology

from R. Hamm, Applications of Accelerators

EuCARD-2 Milestone 21, WP4 56 accelerator applications listed

http://eucardapplications.hud.ac.uk/wpcontent/uploads/2014/01/Accelerator-applications.xlsx

+ Concepts for transfering technology from research to industry (how to bridge the valley of death): new ides coming out of WP2 (see WAMAS Workshop)

	Area	Application	Accelerator Type	Primary Beam type
	Energy			
		Nuclear fission via ADS	Linac	Ion
		Magnetic Confinement Fusion - plasma heating with neutral ion beams	Linac, electrostatic	Ion
		Heavy Ion Inertial Fusion	Induction linac	Ion
		Muon catalysed fusion	Requires muon production	Proton
		Nuclear Waste transmutation via ADS	Linac	Proton
		Bio-fuel production	Linac, electrostatic	Electron
	Environment			
_6		Treatment of beehives for disease	Linac	Electron
		Water Treatment - removal of micro-organisms, chemicals, etc	Linac, mainly electrostatic	Electron
-8		Flue Gas treament - removal of NOx and SOx	Linac, electrostatic	Electron
		Radiocarbon dating via atomic mass spectroscopy	Tandem	Ion
		Dating using cosmogenic radionuclides with AMS	Tandem	Ion
		Cosmogenic Radionuclides production measurements for dating studies	Cyclotron	Ion
		Dating of Ground Waters via AMS	Tandem	Ion
_	Medicine			
		Radioisotone production	Cyclotron	Proton
		Badiotheraphy	Linac	Electron
		Proton therapy	Cyclotron synchrotron	Proton
	0	Neutron Stimulated Emission Computed Tomography	?	?
*	le al	Sterilisation of medical equipment	Linac	Electron
0.0	108 1	Ion Beam Therapy	Synchrotron	lon
dine	on oe	CT Scan	X-ray tube	Electron
yer ni	. NOT	Boron Neutron Canture Therapy	Voltage multiplier lipac cyclotror	Proton
e re	E.	Broton Computed Tomography	Cycletron	Proton
i's No	Inductor	Proton compated romography	Cyclotron	FIOLOII
ne ver	industry	Fami Conductors Ion Implementation	Electrostatio	lon
90.		Semi-conductors, for implantation	Various	IUII Electron /Ion
		Surface Treatment	Various	Electron/Ion
		Food Indulation	Various	Electron
		Cross Linking of filter membranes & better concreters	Flootrostatio	Electron
4		Gratting of filter memoranes & battery separators	Electrostatic	Electron
		Ink & Coating Curing	Electrostatic	Electron
		IBA: Accelerator Mass Spectrometry	Tandem/electrostatic	ion
		IBA: Particle Induced X-ray Emission	landem/electrostatic	Proton
		IBA: Rutherford Back Scattering Spectronomy	Tandem/electrostatic	lon
		IBA: Elastic Recoil Detection Analysis	Various	Many ions
		IBA: Particle Induced Gamma ray Emission	Tandem/electrostatic	lon
		IBA: Nuclear Resonance Reaction Analysis	Various	lon
		IBA: Charged Particle Activation Analysis	Tandem/electrostatic	lon
		Neutron activation analysis	Neutron generators	
		Gemstone Enhancement	Linac	Electron
		Electron Beam welding	Electrostatic	Electron
	Security & Defer	nse		
		Hydrodynamics tests	Linac - induction	Electron
		Cargo Scanning - especially shielded nuclear materials	Linac and betatron	Electron
				Neutron
				Muon
		Proton radiography	Linac?	Proton
18C	Research			
		Synchrotron Light Source	Synchrotron	Electron
		Spallation Neutron Sources	Synchrotron & cyclotron	Proton
		MuSR	Cyclotron, synchrotron	Proton
		Particle Physics	Synchrotron, linac	Proton, Electron
		Heavy ion physics	Synchrotron	lons
		De dise ative ince	the second states of a second states	Duration Office

Linac. cvclotron & synchrotron

Proton & ior

Sharing our tools

The EuCARD-2 Transnational Access programs: Access to accelerator test facilities (WP8, 9)

ICTF (RAL): muon beams for cooling studies, detector and instrumentation development HiRadMat (CERN): high-intensity and energy proton beams for material testing MagNet (CERN): infrastructure for magnet and instrumentation testing at cryogenic temp.

ow temperature instrumentation based on optical fibbers has been submitted FOSxCRYO

e strange stra A project made in collaboration between Italian and Hungarian Institutes and University and a start up company form Italy

For superconducting magnet testing for thermal modelling is under preparation THMO Nb₂Sn A project from 2 Italian Universities

3

NEW!!!

Preliminary quench performance of a superconducting solenoid for medical application

AMIT Mag HeBP

A project from Spain: collaboration between institute and industry First test foreseen for February 2014

Public outreach, the key to societal acceptance

Thank you for your attention, and have a good cur have a good cur

EuCARD-2 is an Integrating Activity Project for coordinated Research and Development on Particle Accelerators, co-funded by the European Commission under the FP7 Capacities Programme. This nucleast will contribute to positioning European accelerator infrastructures at the forefront of global

Pint of Science

Invites you to have a pint with scientists from UN, UniGE and CERN

> TUE WED 20 21 May From 20:00

Big Data Brain Lady Godiva Pub 53 Boulevard de Pont d'Arve

Fun Science Bio Le Scandale 24 Rue de Lausanne

EVENTS

available. Read more

Archive >> 2

Read more

9 Apr 2014 Showcasing advar

material develope

WP11 at Hannover Read more 19 Mar 2014 The new EuCARD

19 May 2014 to Annual Meeting, I Read more

Sponsored by

EUCARD

www.pintofscience.ch Limiscope

