

Energy efficiency of particle accelerators – a network in the European program EUCARD-2

M.Seidel, PSI

1st EuCARD-2 Annual Meeting, DESY Hamburg, Mai 19-23, 2014

Outline

Energy Efficiency in Particle Accelerators

- Motivation and Difficulties for EnEfficient
- Powerflow in Accelerators
- Tasks and Themes
- Workshops and Examples
 - CLIC workshop
 - Heat Recovery
 - Energy Management
- Outlook and Conclusions

EUCARD² Workpackages in Eucard

Management and Communication

WP1: Management and Communication (MANCOM)

Networking Activities

- WP2: Catalysing Innovation (INNovation)
- WP3: Energy Efficiency (EnEfficient)
- WP4: Accelerator Applications (AccApplic)
- WP5: Extreme Beams (XBEAM)
- WP6: Low Emittance Rings (LOW-e-RING)
- WP7: Novel Accelerators (EuroNNAc2)

Transnational Access

- WP8: ICTF@STFC
- WP9: HiRadMat@SPS and MagNet@CERN

Joint Research Activities

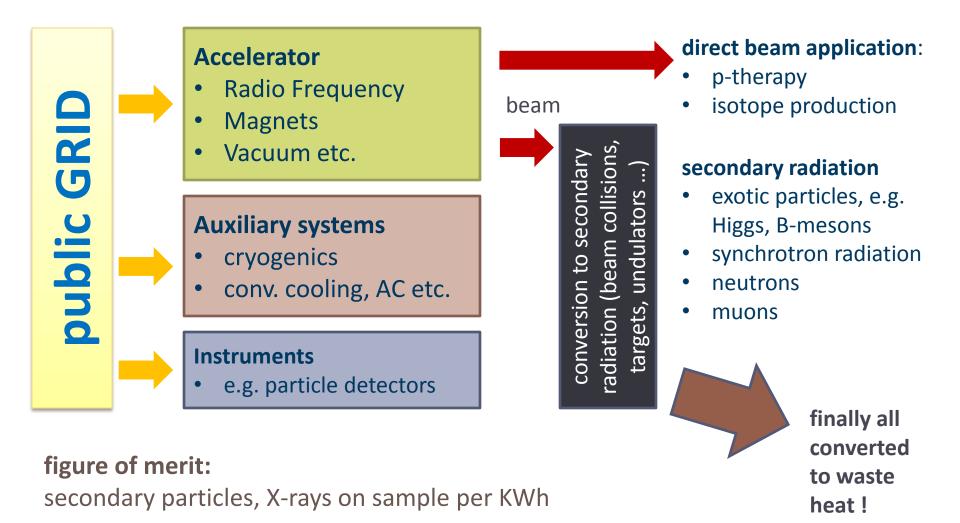
- WP10: Future Magnets (MAG)
- WP11: Collimator Materials for fast High Density Energy Deposition (COMA-HDED)
- WP12: Innovative Radio Frequency Technologies (RF)
- WP13: Novel Acceleration Techniques (ANAC2)

EUCARD² Motivation for EnEfficient

 worldwide scarcity of resources and climate change also impacts research facilities and is of great political importance

[e.g. Swiss "Energiestrategie 2050": public institutions asked to improve efficiency by 20% till 2020 ...]

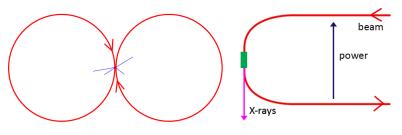
 next generation accelerator facilities provide a new quality of research opportunities, but often connected with a new quality of energy consumption as well
 [EuroXFEL, FAIR, ESS, LHeC, FCC, ILC, CLIC, Project-X ...]


→ wee need to intensify our efforts to optimize the energy efficiency of accelerator systems

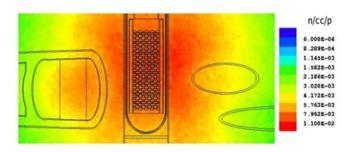
Energy Efficiency – why is it often low priority?

- first priority of a typical accelerator based project are aspects like: Luminosity, Beam Power, X-Ray Brightness, Emittance and so forth
- second priority is technical reliability and overall availability
- only then other aspects are operating cost and energy efficiency compromises:
- high energy efficiency often causes higher investments which amortize slowly
- efficiency friendly choices often contradict technical reliability and flexible operating conditions (e.g. high operating temperature of klystrons, or interdependence of public heating and operation of a facility)
- → despite of such difficulties it is obvious that political and public acceptance for future accelerator projects make it mandatory to consider Energy Efficiency for each new project

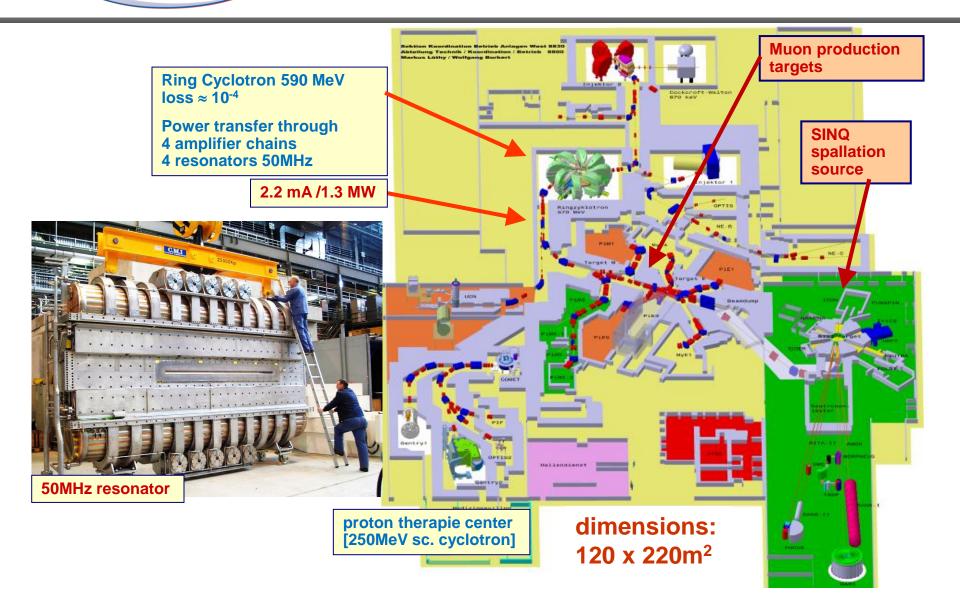
EUCARD² Powerflow in Accelerators



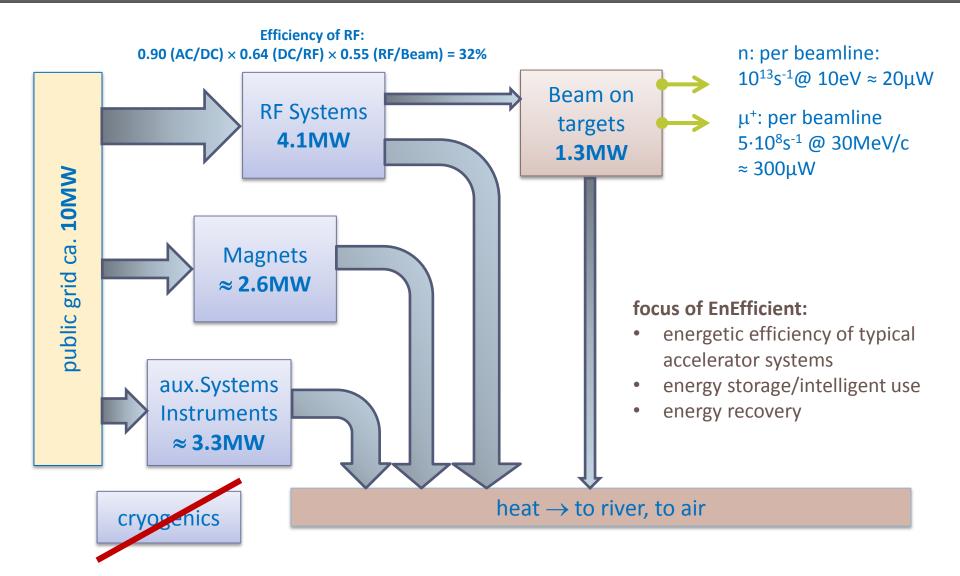
conversion efficiency to secondary radiation


In most accelerator applications a conversion to secondary beams/particles is necessary; typically this conversion process has great potential for the overall efficiency

- Synchrotron Radiation
 - emittance!; optimized undulators; FEL: coherent radiation; energy recovery
- Colliders
 - recirculation concept to re-use beam; low-beta insertion; crab cavities etc.
- Neutron Sources
 - target layout; choice of beam energy; moderators, neutron guides etc.
- Muon Sources
 - target layout; capture optics; μ -cooling


efficient concepts: collider / energy recovery

neutron source optimization: spallation target / moderator



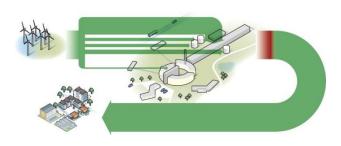
EUCARD² Example: PSI Facility, 10MW

Example: PSI-HIPA Powerflow

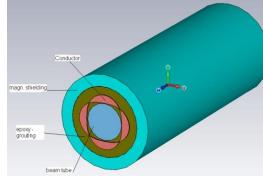
tasks within EnEfficient

task 1: energy recovery from cooling circuits, Th.Parker, E.Lindström (ESS)
[workshop April 14, survey of European Labs, applications of heat, T-levels etc.]
task 2: higher electronic efficiency RF power generation, E.Jensen (CERN)

[workshop Daresbury in June, e.g. Multi Beam IOT's]

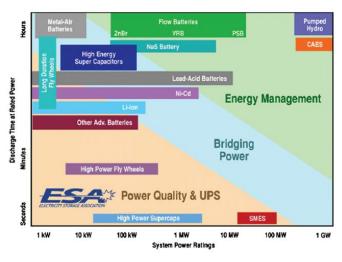

task 3: short term energy storage systems, R.Gehring (KIT)

[non-interruptable power, short term storage, wide spread of time scales ...]


task 4: virtual power plant, J.Stadlmann (GSI)

[adaptation of operation to grid situation – context renewables..., possibly backup power generator ...] **task 5**: beam transfer channels with low power consumption, P.Spiller (GSI) [pulsed magnets, low power conventional magnets, permanent magnets, parameter comparison etc.]

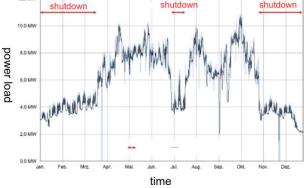
EUCARD² Energy Efficiency Examples

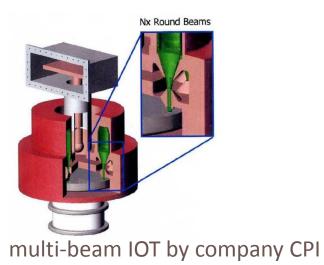


heat recovery at ESS

pulsed quads [GSI]

review of energy storage systems


permanent magnet [CLIC]

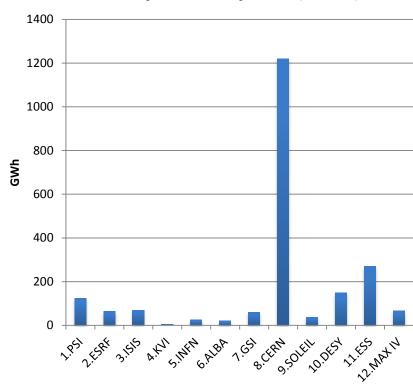


need for energy management

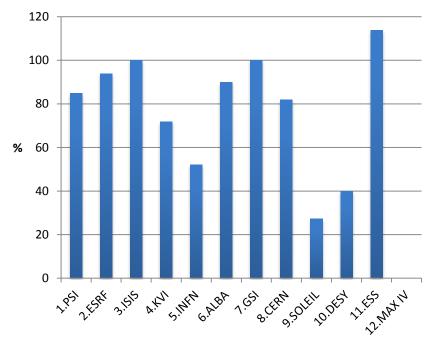
power load curve of GSI 2011

12.0 MW

EUCARD² Workshop in Lund on Heat **Recovery and General E-Themes**


Participants (Experts) from DESY, ALBA, SOLEIL, ESS, MAX-4, PSI, DAFNE, ISIS (institutes) E.ON, Kraftringen, Lund municipality (industry, local authorities)

- heat recovery works for many facilities; high temperatures beneficial
- local heat distribution system required
- greenhouses present interesting application (non-linear scaling)
- new facilities MAX-4 and FSS foresee heat recovery on large scale

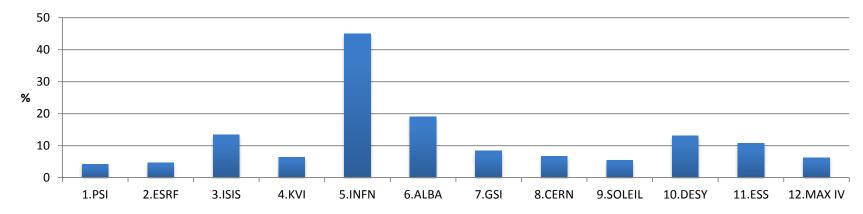


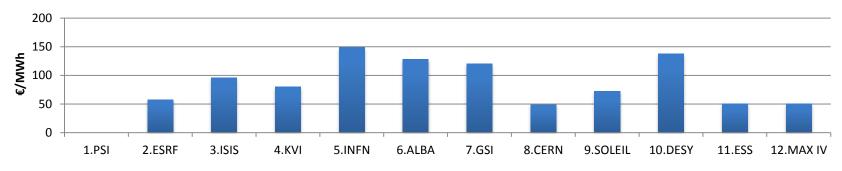
Electricity consumption (GWh)

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

EUROPEAN SPALLATION

SOURCE


Lab Survey: Energy Cost

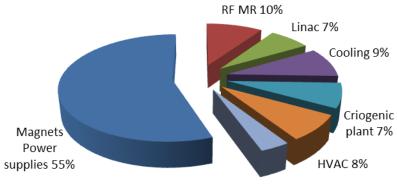

EUROPEAN SPALLATION SOURCE

J.Torberntsson, ESS

Energy-related part of costs (%)

Electricity price (€/MWh)

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453


Lund workshop: optimizations at DAFNE

	kW	€cent/kWh	K€/day	1 year bill (200 run days) [M€]	Up-to date 1 year bill [M€]
Run KLOE 2005-2006	5.900	9,8	13,88	2,78	5,12
Run KLOE (Dec 2013)	3.340	18,08	14,49	2,90	2,90
Power demand reduction =	2.560		200 days run saving = 2,22		

R.Ricci, U.Rotundo INFN Frascati

	dec- 2005	NOW
Magnets Power supplies	3.984	1.850
RF MR	524	320
Linac	201	233
Cooling	600	300
Criogenic plant	250	250
HVAC	250	260
Kloe	150	120
tot	5.959	3.333

Wiggler pole shaping and current reduction (730-> 400 A)	1700 kW
n. 4 Septa 34° magnets new coils	250 kW
n. 4 Splitter magnets removal (new interaction zone for the crab-waist)	160 kW
Dafne RF system optimization	170 kW
Dafne cooling system optimization	280 kW
Total power demand reduction	2.560 kW

Use of Waste Heat

• produce work \rightarrow electrical power?

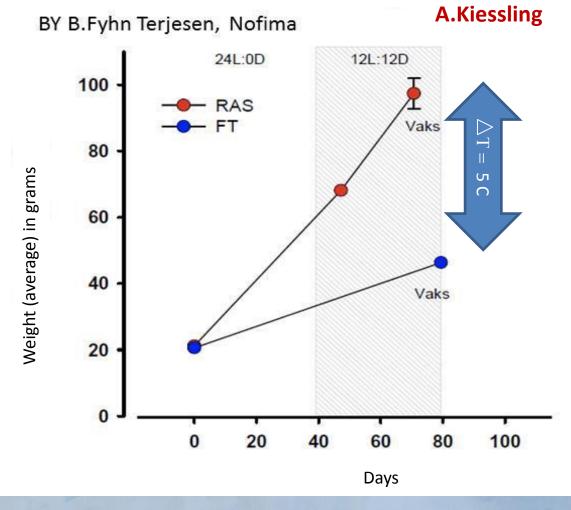
$$W_{\rm max} = Q \left(1 - T_0 / T \right)$$
 example: T=40°C: efficiency 8% T=95°C: efficiency 20%

convert heat to higher T level for heating purposes

 $Q_{\rm H} = W \cdot {\rm COP}$

example: T=40°C, T_{use} =80°C, COP=5: W=10kW, Q_C =40kW, Q_H =50kW (availabe for heating)

use heat directly at available temperature


example: T_{use} =50°C ...80°C : heating T_{use} =25°C...50°C: green houses, food production

energy for sustainable science, CERN, October 2013

Photo A.Kiessling

An increase in temperature from 8.6 to 13.7 °C doubled the growth rate in salmon smolt.

SURPLUS ENERGY AND FOOD PRODUCTION.

Anders.kiessling@slu.se

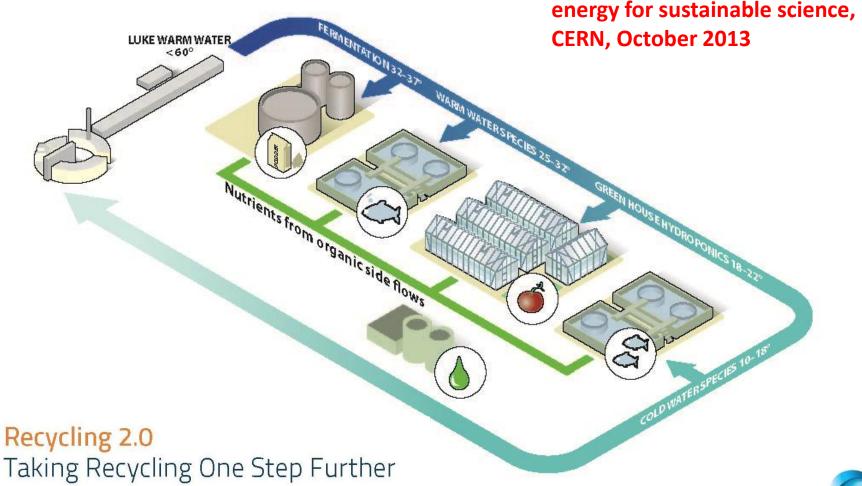


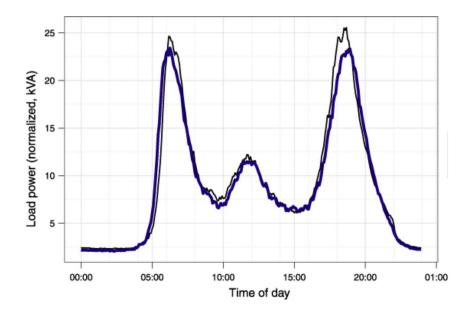
Illustration Peter Lönnegård & FredrikIndebetou

February 14 Session on CLIC Energy Efficiency indico.cern.ch/event/275412

Paths to CLIC power and energy efficiency	Philippe LEBRUN 🗎	
Room Georges Charpak (Room F), CERN	08:30 - 08:50	
Foreseen operating modes and transients affecting CLIC power/energy consumption	Dr. Andrea LATINA 🗎	adaptation to grid situation, "virtual power plant"
Development of permanent-magnet based accelerator magnets	Ben SHEPERD 🗎	
Room Georges Charpak (Room F), CERN	09:10 - 09:30	low power beam transport
Power/size trade-offs in classical electromagnets	Michele MODENA 🗎	low power beam transport
Room Georges Charpak (Room F), CERN	09:30 - 09:50	
How to reduce cooling and ventilation duties in CLIC	Mauro NONIS 🗎	
Room Georges Charpak (Room F), CERN	09:50 - 10:10	cooling, heat recovery
Future electricity supply contracts, peak periods and tariffs	Francois DUVAL 🗎	
Room Georges Charpak (Room F), CERN	10:10 - 10:30	
Coffee break		
Room Georges Charpak (Room F), CERN	10:30 - 11:00	
Challenges and development of high-performance klystron modulators for CLIC Drive Beam	the Davide AGUGLIA	
Status on klystron modulator repeatability for the CLIC Drive Beam	Anthony DAL GOBBO 🗎	
Room Georges Charpak (Room F), CERN	11:20 - 11:40	higher electronic efficiency RF
Development of two-klystron modulator topologies for Francisco CABALEI the CLIC Drive Beam	IRO MAGALLANES et al. 🗎	generation
Active front-end and power system optimization for the CLIC Drive Beam k modulators	lystron Marija JANKOVIC	

Power consumption of ancillary systems ventilated pro rata and included in numbers by WBS domain

500 GeV A 3 TeV 1.5 TeV Total 272 MW Total 364 MW Total 589 MW Main Tunnel Drive Beam Drive Beam Main Beam Main Beam Main Tunnel Drive Beam Main Beam Main Tunnel up to 9 GeV up to 9 GeV up to 9 GeV FMT FMT FMT Tr Tr Tr 13% 15% 9% 12% 6% 4% 47MWBDS+Exp 88MW 23MW 32MW 23MW 2MW8% BDS+Exp 47MW13% BDS+Exp 46MW 17% DR 47MW 12% DR DR 32MW 8% 5% 30MW 29MW RF RF RF 43% 52% 31% 155MW ML 85MW 305MW ML 12% So So 13% ML So 37MW 35MW 7% 6% 4% 24MW 17MW 23MW 43% 33% 24% 56% 21% 23% 68% 13% 20% 117MW 90MW 64MW 201MW 76MW 84MW 393MW 74MW 115MW


RF: drive beam linac, FMT: frequency multiplication & transport, So: sources & acceleration up to 2.5 GeV, DR: damping rings, Tr: booster linac up to 9 GeV & transport, ML: main linacs, BDS: beam delivery system, main dump & experimental area

Ph. Lebrun

CLIC Workshop 2014

Energy consumption per day

Andrea Latina, CERN

• 1 day with 2 × standbys:

(calculation for 3TeV case)

$$\begin{split} \mathsf{E}_{\mathsf{standby}} &= 582 \; \mathsf{MW} \times 14 \; \mathsf{hours} \; + 2 \times (4 \times 268 \; \mathsf{MWh} + 1 \times 425 \; \mathsf{MWh}) = 11.14 \; \mathsf{GWh} \\ \mathsf{L}_{\mathsf{standby}} \mathsf{t} &= 2.0 \times 10^{34} \; \mathsf{cm}^{-2} \mathsf{s}^{-1} \times (14 + 2 \times \frac{1}{2}) \; \mathsf{hours} = 1.08 \; \mathsf{fb}^{-1} \end{split}$$

Energy consumed is reduced by18% (-2.826 GWh)Luminosity delivered is reduced by37% (-0.648 fb⁻¹)

F.Duval, CERN

Example: EDF (French utility)

(comsumption part of one of the industry 400 kV tariff)

Highest price is ~7 times the lowest one

Season	Tariff daily period	Price (c/kWh
Winter (December, January & February)	Peak period: 8:00 to 10:00 and 17:00 to 19:00	13.966
	Valley period: 22:00 à 6:00	4.225
	Full period: 6:00 to 8:00, 10:00 to 17:00 and 19:00 to 22:00	8.664
Middle season (March & November)	Valley period: 1:00 to 7:00	2.977
	Full period: 0:00 to 1:00 and 7:00 to 24:00	4.599
Summer (April, May, June, September and October)	Valley period: 0:00 to 6:00 and 22:00 to 24:00	2.014
	Full period: 6:00 to 22:00	3.919
July & August	Full day	2.918

energy spot market prices

→ energy managment, virtual power plant

found on the Korrelation Wind & Last & EEX – deutliche Zusammenhänge internet stündliche aufgelöste Daten für 2007 und 2008 400 20 350 18 300 М 16 renewables Spotmarktpreis in € / MWh Windenergieeinspeisung in 250 14 cause strong 200 12 variations 150 10 100 8 Impact on 50 accelerators? 6 0 4 -50 2 -100 25 75 80 30 35 50 60 65 70 40 55 Last in GW **Negative Strompreise** Wind senkt den Spotmarktpreis zu Schwachlastzeiten bei wenig / viel Wind Quelle: IWES - work in progress, 2010

Energy Management or "virtual power plant"

in the presence of more and more renewable energies flexibility becomes more important

- adapt operation to situation on Grid, e.g. through efficient standby modes
- energy storage on site, e.g. utilizing cryogenic facility?
- cost effective backup power station, gas turbine?
- → workshop planned for 2015 (J.Stadlmann, GSI)

EnEfficient: summary and outlook

EnEfficient is a **new networking activity** related to efficient utilization of electrical power in accelerator based facilities

at present participating institutes and interested partners: CERN, ESS, GSI, KIT, PSI, DESY

next workshops:

June 3-4, 2014 - Workshop on EnEfficient RF Sources, organized at Cockroft Institute in Daresbury More Information: <u>https://indico.cern.ch/conferenceDisplay.py?confId=297025</u>

November 26-28, 2014: Compact and Low Consumption Magnet Design for Future Linear and Circular Colliders, at CERN.

we are seeking more collaborators, interested colleagues are very welcome to participate in this network

information and contact under: <u>www.psi.ch\enefficient</u>