ESR-3 Silvia Puddu

29-09-2014

A fast overview on my (thesis) subject:

Scientific activity 2014

CNAO MEASUREMENTS

Paint procedure:

procedure.

٠

- The cancer area is scanned with the hadron beam along the X-Y axis ٠
- The dose is uniform over the treated area ٠
- The scan is possible also in the Z direction (not in this study) •

0.1 s

Beam characteristics

	Carbon Beam		Proton Beam
X-Y scanned area (cm ²)	2x2	4x4	2x2
Energy (MeV/nucl)	252	252	132.95
Depth in H ₂ O (mm)	125	125	125
Intensity (part/spot)	5e6	1e6	1e8

Detectors and set up for CNAO measurements

- 2 GEM detector are been tested as beam monitor in the beam line:
 - \circ 2x2 mm² pad organised in a circular anode (active area ~3x3 cm²)
 - \circ 3x6 mm² pad organised in a square anode (active area ~5x5 cm²)
- The radiochromic foils were positioned in front of the GEM

GEM working point (WP)

- In a triple GEM detector the gain follows the behaviour: $G \sim e^{\sum V_{GEMi}}$ where V_{GEMi} are the voltages applied to the single GEM foils
- HV scans were performed for carbon and proton beam in order to choose the right WP

Paint procedure reconstruction with triple GEM

- The paint procedure can be recorded and reconstructed offline through the data acquisition system [4, 5]
- The result of the complete scan procedure is shown in the acquisition program

Radiochromic foil & GEM 3x6 mm² pads. Beam 126 mm depth in water, 5e6 part per spot. Paint 2x2 cm²

Pad 3x6 mm² X-Y scan 2x2 cm²

Left: horizontal profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit)

Pad 3x6 mm² X-Y scan 2x2 cm²

Left: Vertical profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit) for Radiochromic and GEM

Radiochromic foil & GEM 3x6 mm² pads. Beam 126 mm depth in water, 1e6 part per spot. Paint 2x2 cm²

Pad 3x6 mm² X-Y scan 4x4 cm²

Left: horizontal profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit)

Left: Vertical profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit) for Radiochromic and GEM

Radiochromic foil 3x6 mm² pads. Beam 126 mm depth in water, 1e7 part per spot. Paint 2x2 cm²

Left: horizontal profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit)

Left: Vertical profile for Radiochromic and GEM Right: Variance at 90% of the max high (from fit) for Radiochromic and GEM

Conclusions:

- The read out system can register the timing of the paint procedure with negligible dead time
- The timing, the profiles and the image of the complete procedure are shown on line
- The offline analysis shown a good agreement with the radiochromic foils

References:

[1] F. Sauli, *GEM: A new concept for electron amplification in gas detectors*, <u>Nuclear Instruments and Methods in Physics Research A386, p 531, 1997</u>

[2] M. Alfonsi et al., *The triple-Gem detector for the M1R1 muon station at LHCb*, N14-182, 2005 IEEE-NSS

[3] E. Aza et al., *The triple GEM detector as beam monitor for relativistic hadron beams*, <u>JINST 9 P06006, 2014</u>

[4] W. Bonivento et al., *Development of the CARIOCA front-end chip for the LHCb muon detector*, <u>Nuclear Instruments and Methods in Physics Research A491, pp.</u> 233–243, 2002

[5] F. Murtas et al., Applications in beam diagnostics with triple GEM detectors, <u>Nucl. Instrum. Meth. A</u> <u>617 (2010) 237.</u>

Scientific activity 2014

RADIOACTIVE WASTE

Motivation

- Materials in accelerator environment are activated by radiations [1]
- In order to treat this materials after the decommissioning, it is necessary a characterization to know the nuclide population
- Gamma emitters are easily recognised by γ spectrometry
- The challenge is to measure the ⁵⁵Fe amount
- A detector with high efficiency to ⁵⁵Fe and high γ rejection to is needed

 ${}^{55}Fe \rightarrow {}^{55}Mn \ast \rightarrow (\sim 28\%)$ ${}^{55}Mn + 6keV$

12 samples

Ext. Lab

GemPix

Fraiseuse DECKEL FP4M Vitesse de rotation broche : 400tr/mn Vitesse d avance : 40mm/mn Type de fraise utilisee : Fraise d ebauche carbure monobloc MTC TiAIN 6mm Garant (ref SFS 205712 6°) Boxes supplied by SMIPA s.r.l Dimension: 38x38x4 mm³ Weight: ± 0.15% Measurements for Fe-55 concentration with **GEMPIX**: Drift gap **11 mm** Support conceived for measurements with samples and calibration sources

Comparison with PSI laboratories measurements (Radio Chemcal Analysis – RCA)

Sample reproducibility

Dust obtained from 1 Sample \rightarrow 10 tapes Analysed with GEMPIX With on line analysis.

Detector calibration

Gate: 1 s HV 1200 V Gas flux: 3.5 l/h THR: 0: 393 1: 398 2: 497 3: 420 Clk: 24 Ikrum: 5 Polarization: -

Detector Calibration: cluster diameter

SourceFe55

Detector calibration: TOT SourceFe55

Calibration with Fe-55 source: TOT without size cut

On line analysis

Once that the calibration values are set in the Python script, the online analysis is done

Conclusions:

- The GEMPix can better discriminate the x-rays working on cluster recongnition and TOT
- With the python script it is possible to have an on line results after a calibration with a source
- The last result seems to be in good agreement with the external laboratory (PSI)
- The procedure is faster and cheaper than the usual RCA

References:

[1] F.P. La Torre et al., *Radiological Hazard Classification of materials in CERN's accelerators*, CERN technical note 2012 1184236