

# Characterization of Dosepix detector



# as QA prototype in Diagnostics



F.Bisello<sup>1,3\*</sup>, I. Ritter<sup>1</sup>, A.Zang<sup>1</sup>, W.Wong<sup>2</sup>, E.Frojdh<sup>2</sup>, M.Campbell<sup>2</sup>, J-C.Celi<sup>3</sup>, G.Anton<sup>1</sup>, T.Michel<sup>1</sup>

#### **Dosepix Detector: General overview**

The dosepix detector is characterized as quality assurance in diagnostics, in particular for mammography tool examinations (X-Ray tube voltage: 22-35 kV).

The dosepix detector belongs to the family of the hybrid pixel detector and it was developed within the framework of a research partnership between CERN, Friedrich-Alexander-University Erlangen Nürnberg and IBA Dosimetry.

The technology allows the analysis of single photon and the reconstruction of deposited energy spectrum.

### **Detector Characterization (II): Temperature dependency**

The IEC 61676 "Medical electrical equipment – Dosimetric instruments used for non-invasive measurement of X-ray tube voltage in diagnostic radiology" requires a stability of the detector response of 1% in the temperature range 15°- 35°C.

Time-over-Threshold value of the 60 keV Am-241 photopeak, (100 MHz clock unit) in relation to the external temperature shows a slope in the temperature range of 15°- 35°C of -0.8%\°C.

# **Detector Characterization (III): Radiation Tolerance**

Dose estimation of 30 years of working life as quality assurance device in mammography: 500 Gy. Accumulated dose for the test: 5 kGy in step of 200 Gy Tube settings: 40 kV, 2 mA dose rate 4.83 Gy/min

Evaluation of the position of the 60 keV Am-241 photopeak in term of Time-over-Threshold value (100 MHz clock unit):

- Shift of 3% up to 1.2 kGy
- High stability in the range between 400 and 1200 Gy.

|     | -               | 247 | 1   | Ì |  |
|-----|-----------------|-----|-----|---|--|
|     | 1               |     |     |   |  |
|     | <b>न</b> ष्त्रे |     |     |   |  |
|     | 3               |     | 100 |   |  |
| 3.5 |                 |     |     | 0 |  |

| PARAMETER                                    | SPECIFICATION     |  |  |
|----------------------------------------------|-------------------|--|--|
| Pixel Pitch                                  | 220 µm x 220 µm   |  |  |
| Big pixel side size<br>Small pixel side size | 220 μm<br>55 μm   |  |  |
| No. of Rows                                  | 16                |  |  |
| No of Columns                                | 16                |  |  |
| Sensitive Area                               | 3.52 mm x 3.52 mm |  |  |
| Sensor Thickness                             | 300 µm            |  |  |
| Sensor Material                              | Silicon           |  |  |
|                                              |                   |  |  |

## **Detector Characterization (I): Pile-up correction**

Typical flux in mammography :  $10^{6}$ - $10^{7}$  photons/mm<sup>2</sup>/s. In this condition, energy deposition spectra of the big pixels are affected by front-end pile up.





Source of Instability (I) : PLL circuit

- Digital test pulses are not affected by instability due to external temperature
- Programming the chip bypassing the PLL circuit gives a stability of the ToT readout within 1.6%.



Up to 2 kGy, the experimental data can be fitted with a linear fit with a slope of 3%\kGy.



#### Conclusions

The dosepix detector shows good potentiality as quality assurance tool:

- the additional filtartion of 0.3mm Cu allow the use of the detector in the mammography conditions.
- The chip design provides good results in radiation tolerance studies.

Reduction of the distortion of the energy deposition spectra due to pile up:

- Pile-up contribution can be monitored by the ratio between the counts in small and big pixels. Nominally the ratio should be equal to 16.
- Additional filtration of 0.3mm Cu provides a stability in the counts ratio in the whole flux range.
- The detector ASIC is able to process the impinging radiation up to 3.10<sup>5</sup> photons/mm<sup>2</sup>/s without the data being affected by front end pile-up.
- This allows the use of the end point of the spectrum for the determination of the tube operation voltage of the mammographic unit.



Source of Instability (II): Initial gain stage of the discriminator

- Monitor of the voltage of the initial gain stage of the discriminator (Idisc1) through a dedicated DAC.
- Both the voltage of Idisc1 and the ToT value of internal test pulse (20 MHz clock unit, bypassing the PLL circuit) present a slope of about 0.1%\°C.



In normal temperature conditions (20-30 °C) the stability is within 1.5%, allowing to continue the evaluation of the

- A future redisign of the detector is under evaluation in order to compensate the sensetivity to temperature.
- Future steps will be the analysis of the impinging spectra in order to obtain information about the tube filtration and the anode material.

#### References **Acknowledgements & Affiliations**

- [1] W.S.Wong, A Hybrid Pixel Detector ASIC with Energy Binning for Real-Time, Spectroscopic Dose Measurements, PhD Thesis, Mid Sweden University, 2012
- [2] W.S. Wong et al. A pixel detector asic for dosiemtery using ToT energy *measurement*, Radiation Measurement, 46(2011) 1619-1623
- [3] CEI IEC INTERNATIONAL STANDARD 61676, Medical electrical equipment – Dosimetric instruments used for non-invasive measurement of X-ray tube voltage in diagnostic radiology
- [4] G. Knoll, Radiation Detection and Measurement, 3rd Edition. New Jersey, USA: JohnWiley & Sons, 2000.

#### This research project has been supported by:

ARDENT Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme.

#### Affiliations:

- (1) Friedrich-Alexander-Universität, Erlangen-Nürnberg
- (2) Medipix Team, Microelectronics Group, CERN
- (3) IBA Dosimetry, Schwarzenbruck, Germany



#### detector performance as quality assurance tool.

\*contact: francesca.bisello@iba-group.com