

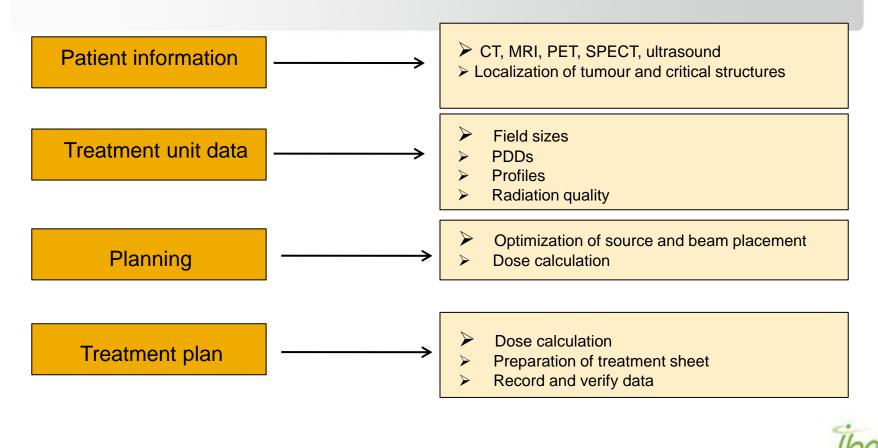
Treatment Planning Basics

2014-10-01 Ruxandra Fizesan P&I

Agenda

- Radiation Treatment Planning
- Planning Process Overview
- Patient data Volume definitions
- Computed Tomography CT
- Plan Evaluation-Isodose distribution
- Treatment unit data
- Dose calculation algorithm
- Example of plan step by step

Radiation treatment planning


The radiation treatment planning is the process in which a team consisting of radiation oncologist, radiation therapist and medical physicist plan the appropriate external (or internal) radiotherapy.

The treatment planning is the task to make sure a prescription is put into practice in an optimized way.

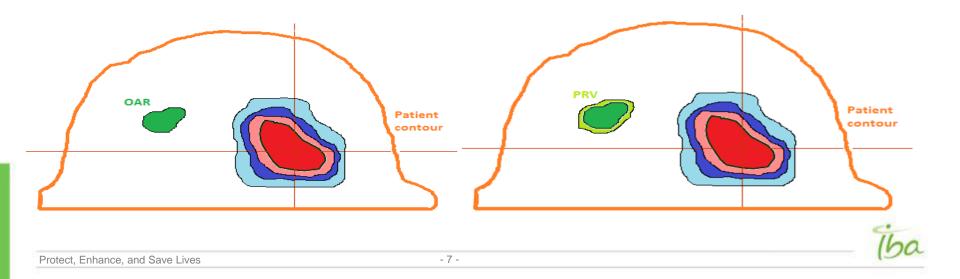
Planning process overview

Patient data ->Volume definitions

- > The patient's body is neither homogeneous nor flat in surface contour.
- The dose distribution in a patient may differ from a standard distribution (usually measured in a water phantom, in standard conditions).
- Accurate patient dosimetry is possible when sufficiently accurate patient data are available:
 - Body contour
 - Density of relevant internal structures
 - Location and extension of target volumes

•

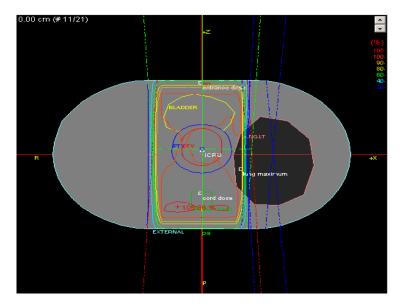
PTV - history


ICRU report	Definitions	Uncertainties	
Report 29 (1978) 2D RT	TV Target volume	Biological + Repositioning	
Report 50 (1993) early 3D RT	CTV Clinical Target Volume	Biological	
	PTV Planning Target Volume	Repositioning	
Report 62 (1999) advanced 3D RT	CTV Clinical Target Volume	Biological Subclinical extension	
	ITV Internal target Volume	Organ motion	
	PTV Planning Target volume	Repositioning	

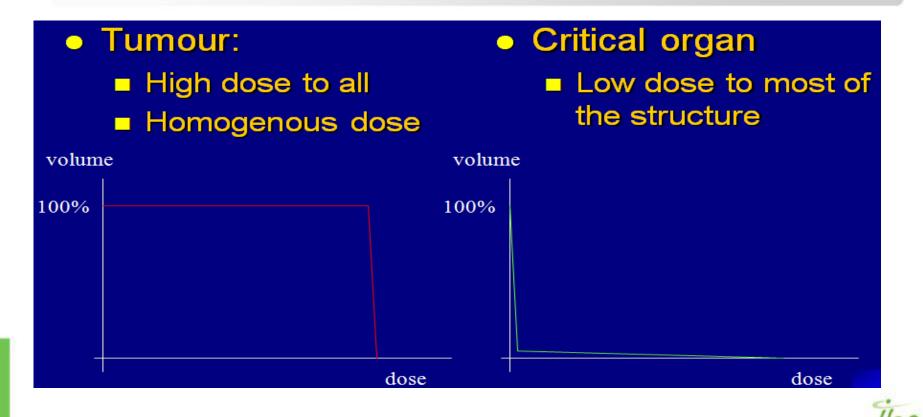
Organ At Risk - OAR

Organs at risk are normal tissues whose radiation sensitivity may significantly influence treatment planning and/or prescribed dose

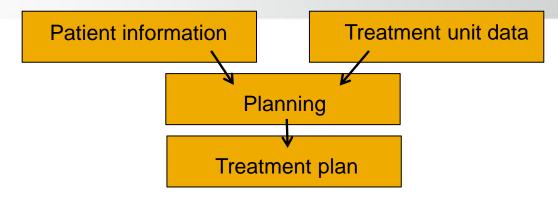
- Margins needed to be added to compensate for its movements (internal movements or set-up).
- **This leads to the concept of the Planning Organ at Risk Volume (PRV).**


Computed Tomography - CT

- **For 3D treatment planning a CT data set is required.**
- On each CT slide shall be delineated: external contours (skin or immobilization mask), tumor, target volumes and, if necessary, organs at risk.
- **The patient shall be in the same position as in the treatment.**


Plan Evaluation-Isodose distribution

The isodose distribution is verified to ensure that the target coverage is adequate and the critical structures are spared as necessary.

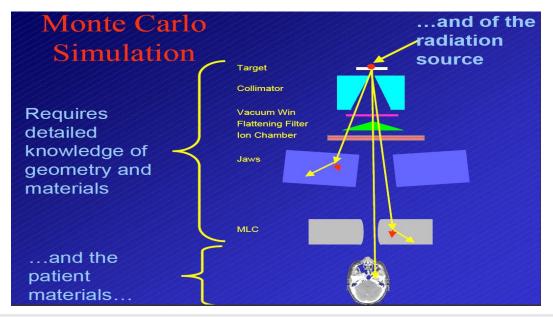


Plan Evaluation-Ideal DVH

Treatment unit data

- Field sizes
- Output factors
- Profiles
- PDD for SSD setup
- TAR for SAD setup
- Beam quality

- **Calibration**
- Mechanical components
- Jaws and MLC
- Static and virtual wedges

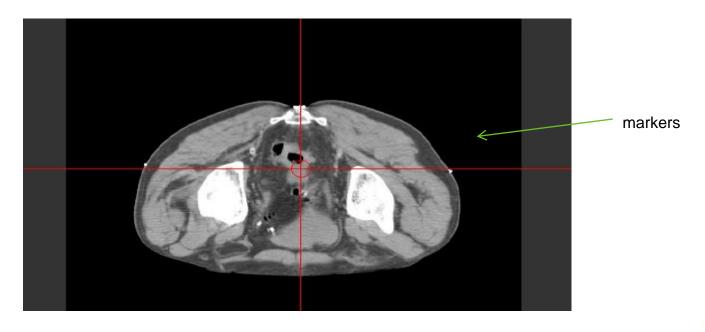

Dose calculation algorithm

- The intent of a dose calculation algorithm is to predict the dose to any point in the patient as much accurate as possible.
- These algorithms have inherent limitations due to approximations used in the physical model.
- Prior the 1970s the algorithms were intended for manual calculation: simple and straightforward, but really time consuming.
- From 1970s the development of CT and powerful computers lead to CT-based computerized TPS: dose distribution could be viewed directly superimposed upon patient's axial anatomy.

Monte Carlo methods

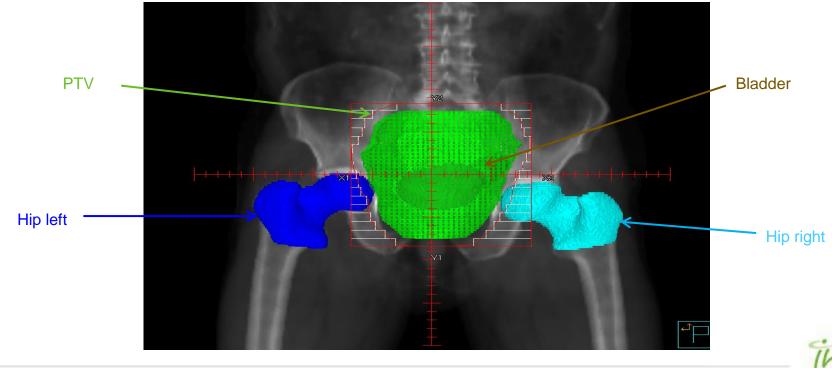
- Monte Carlo techniques are used to generate dose distributions by following the histories (from the source to the patient) of a large number of particles.
- **MC** needs information regarding linac and patient.

1. CT of the patient.


File Options Utilities View	Planning Planning Image: second se	
Patient Setup Scanner GE CT-Density GE 20091029-120kV= View Table Window / Level Patient position during scan Dn front (prone) Patient orientation on table Head First Into Scanner Scan acquisition direction		markers
Table Moves Into Scanner Use body board	5) (cc. 93; 2 = 29,075)	table
	Slice 255; X = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608 Image: Slice 255; Y = -0,608	iba

Protect, Enhance, and Save Lives

CT setup parameters


2. Creation of the laser point.

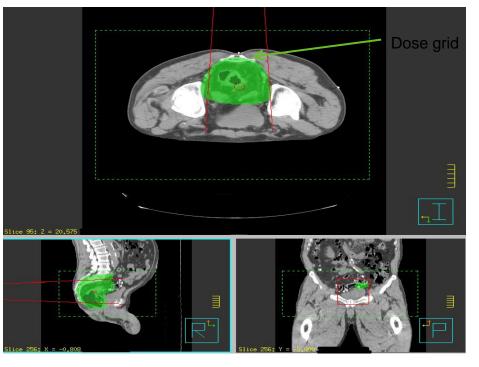
It's the internal point aligned with the markers. In general doesn't correspond to the isocenter

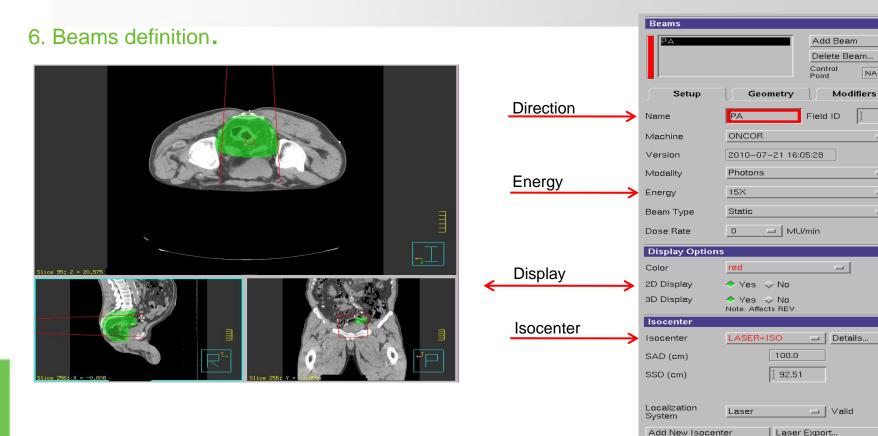
3. PTV and OAR

PTV is given by the oncologist.

4. Creation of the isocenter.

It's usually located at the center of the PTV.


In this case the laser point is inside the PTV and corresponds to the isocenter.



5. Dose grid definition.

Definition of the area where the dose calculation takes place. The dose grid has to be

defined in the three directions.

œ

((()

<u>.</u>

X Aim 20

C Aim 30

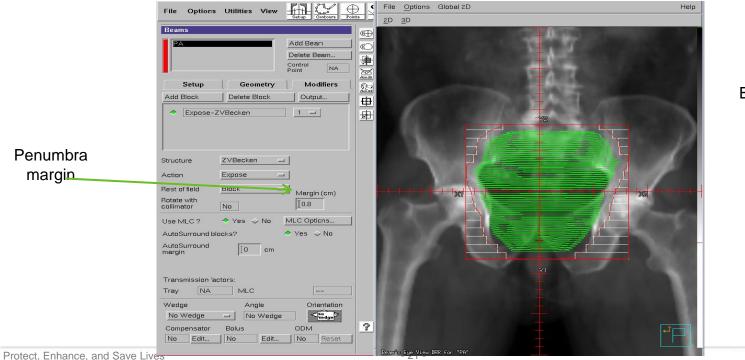
⊕

曼

?

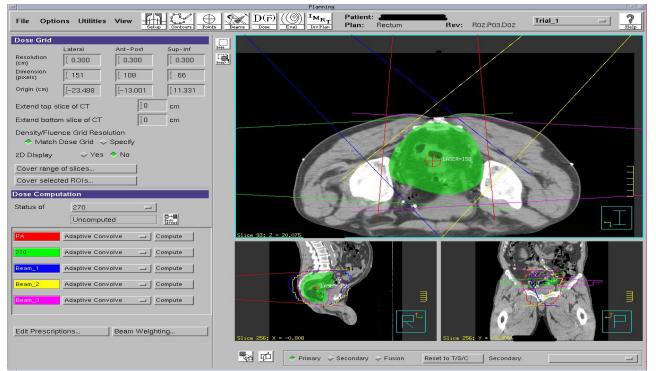
NA

-

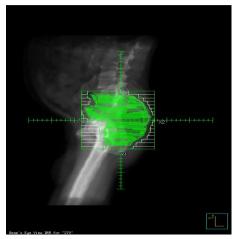

6. Beams definition.

Beams	(IIII)			PA	Add Beam
PA Add Beam					Delete Beam
Control NA	<u>*</u>			Setup Geometry	Point NA Modifiers
Setup Geometry Modifiers	Aim 20 Aim 20			Add Block Delete Block	
socenter LASER=ISO	Aimaa				
Angles Couch 180	一一				
0 \$ 90 270				Structure Manual	-
Gantry 0		Contra		Action	-
Start 270 90		Gantry		Rest of field	Margin (cm)
Stop				Rotate with collimator No	¥.
Santry Rotation Direction 📿 180 Collimator (from above) 90			MLC	Use MLC ? 🔷 Yes 🔶 No	MLC Options
0.0 \$ 180				AutoSurround blocks?	💠 Yes 🔶 No
270 Jaws				Tray #	No Bloc
Y2 Y1 Symmetric ✓ ↓ 5.0 ↓ 5.0 No		Jaws		Transmission factors: Tray NA Block and T	ray NA
< <u>I</u> 5.0 <u>I</u> 5.0 No				Tray NA Block and T Wedge Angle	Orientation
Units: cm X2 X1			Wedge	No Wedge No Wedge	
Apply To All Beams				Compensator Bolus	ODM
	?			No Edit No Edit.	No Reset

Beams

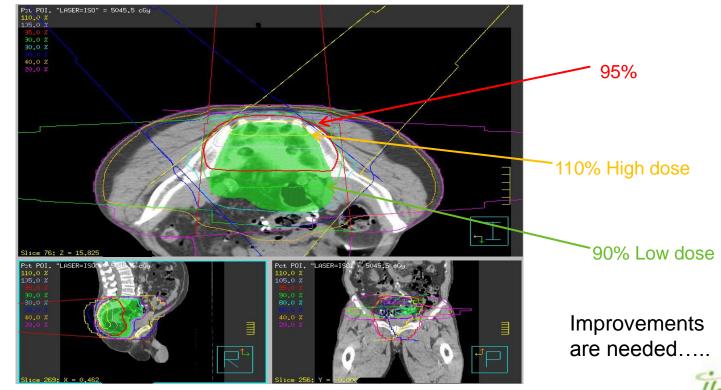

7. MLC definition.

Automatically adjusted around the PTV. The penumbra margin is now taken into account.

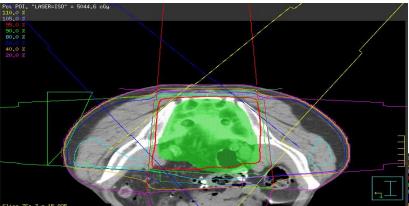

Beam Eyes View (BEV)

8. Complete beams definition.

5 beams are defined: • PA • 270 (BEV under) • 90 • 320

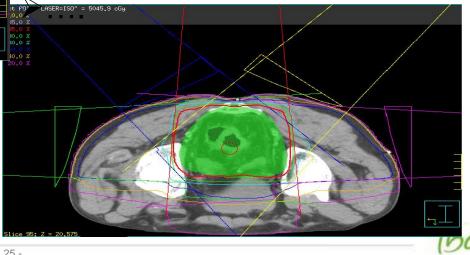

9. Prescription definition.

Dose per fraction and number of fractions are given by the oncologist.

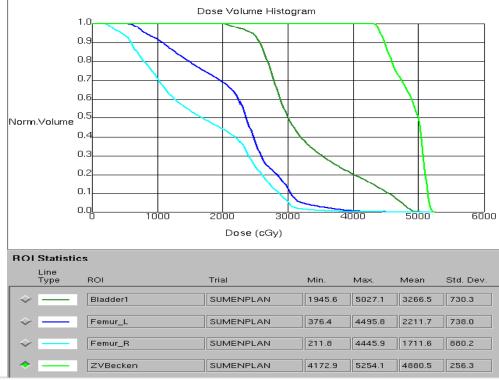

	Edit Prescription	
	Prescriptions for trial:	
Dose for	Poscription: Rectum red -	
fraction	Prescribe	It's important to
	Prescribe: 180 cGy Per Fraction	It's important to
	Prescription percentage: 100 %	define the point
	Percentage of: Point Dose	respect to the
	for POI:	-
	Beam weights proportional to:	dose calculation is
	⇒ Set Monitor Units	
Fractions	Total Monitor Units:	computed.
	Number of Fractions:	
	Dismiss	
	Prescriptions for trial:	
	Normalization Method: 🔷 Relative dose mode. Normalize dose to reference field.	
	Absolute dose mode. Prescribe or set monitor units.	
	Current Name Description Add Edit Remove	
	Rectum Prescribe 180 cGy per fraction to 100 % of point dose at "LASER=ISO" for 28 fractions. Dose is relative because one or more prescriptions are invalid. 5 beams are assigned to this prescription.	
		11-
	Dismiss	[9
Protect, Enhance, and Save Lives	- 23 -	

10. First dose calculation

The PTV should be covered by the 95% isodose. In the PTV no isodose over the 105%.



11. Optimization


You can play with:

- > Wedges
- > Beam weight
- Beam angles
- ➢ MLC opening

You have to accept some compromises.

12. DVH and dose values.

Protect, Enhance, and Save Lives

26

Thank you!

