High Resolution Digital Flat-Panel X-ray Detector Based on Large Area CMOS Image Sensor

Korea Electro-technology Research Institute
Advanced Medical Device Research Center

Chorong Kim, Bokyung Cha, Keedong Yang, ryunkyung Kim, Sungchae Jeon

PIXEL 2014, Niagara Falls (Canada), 5 September 2014

Outline

- Introduction
- CMOS X-ray detector module
- X-ray characteristics
- Future works
- Summary

crkim@keri.re.kr

Introduction (1)

X-ray digital flat panel detectors

- Digital flat panel detectors are used for clinical applications such as mammography and fluoroscopy.
- Most flat detectors are based on indirect conversion via scintillator and an active pixel matrix of a-Si photo diodes
- Recently, CMOS image sensor also studied actively.

Flat detectors

Introduction (2)

- Advantages of CMOS process for flat panel detector
 - CMOS process enables integration of many additional features.
 - On-pixel amplification
 - Various pixel circuits from 3 transistors(3-TR) up to 100 transistors per pixel
 - Integrating detectors with CMOS readout circuits (e.g. A/D conversion, Logic)
 - Electronic shutter
 - global shutter, rolling shutter, non-destructive reads
 - Overcome the size limitation through advanced process technology
 - No more problem with producing large area CMOS image sensor.

⇒ We study on a high resolution X-ray detector to acquire high quality images for real-time display based on CMOS sensor.

Main Features of CMOS X-ray Detector Module

- > Detector area : 12 x 12 [cm²]
- > Pixel size : 100 x 100 [um²]
- > Full well capacity: 4.4 Me-
- > Pixel matrix : 1200 x 1200
- > TowerJazz 0.35 um CMOS process
- > Three-side-tileable structure
- Column-paralleled ADCs
- > 14 bit digital outputs
- > 2x2 pixel binning
- > 30 frame per second in full-resolution
- Rolling shutter method
- Power supply: 3.3 V, 3.9V, 3.0V, 0.6V
- Number of Pads: 752 pads on bottom side

Large Area CMOS Image Sensor

Large-area CMOS Sensor with Stitch Process

- 3-TR Active Pixel Sensor.
- Stitch process for large die size
- Segment Design : 9 segments from A to I
 - E segment consists of 200 x 200 pixel arrays. It repeats 36 times to produce 1200 x 1200 arrays.
 - Row driver and column-paralleled ADCs are located in H segments. It also repeats
 6 times on the bottom side of sensor.
 - Other segments are empty area.
- According to readout structure, we define 'Bank';
 E + H segments.

Readout structure

< 2-Channel Readout Structure >

BK1 BK2 BK3 BK4 BK5 BK6

- Basic structure
 - 2 x 2 pixel array and 2 channel ADCs for binning mode.
- The column-parallel Extended Counting ADC(EC-ADC) is used in a large area CMOS X-ray detector to enhance bit-depth.
 - 1st order $\Sigma\Delta$ -ADC(SD-ADC) output upper 3 bit conversion.
 - Residue is converted by 12 bit SAR-ADC.
- In full-resolution mode, each pixel data is converted by each column ADCs.
- In binning mode, 2 x 2 pixel is selected simultaneously and all pixel charge are summed at even column ADC (ADC<0>).
 - -> the sensitivity increases four times in binning mode.
- 1 Bank includes 200 channel ADCs and 125 pads are placed per bank. So, 18bit ADC raw data of 6 banks output at the same time.

Sensor Control Logic

CMOS X-ray Detector Module (1)

< Front > < Back >

CMOS X-ray Detector Module (2)

- After dicing, the sensor is attached to the PCB board using low temperature cure epoxy.
- Sensor board, interface board, and FPGA board are directly connected via board-to-board connector.
- A substrate covered between the sensor and interface board prevents a sensor board from bending, and also insulates.

X-ray Characteristics (1)

Test Conditions

■ Distance from focal spot to sensor surface : 100 [cm]

• Filter thickness: 5.3 [mm]

■ **Tube voltage :** 75 [kVp] (fixed)

■ **Tube current :** 10 to 125 [mA]

- The intensity of X-ray is linearly proportional to the tube current, not the tube voltage.
- We can obtain linearly incremented intensities.

On-chip ADC condition setup

Full-Resolution / Binning Mode

Scintillator

- DRZ-Standard(GOS)
- Cut the scintillator to fit the sensor size and place it on the sensor.

X-ray Characteristics (2)

Dose Measurement

- Measured by exposing sensor to x-ray for 1 sec while changing tube current from 10 to 125 [mA].
- Calculating dose in proportional to x-ray exposure time on the pixel.
 - In full-resolution mode, integration time is 24 [ms].
 - In binning mode, integration time is 12 [ms].

Tube Current [mA]	Dose [mR]	FULL	BIN
10	19.1	0.4584	0.2292
12	24	0.576	0.288
16	31	0.744	0.372
20	38.8	0.9312	0.4656
24	48.3	1.1592	0.5796
32	61.8	1.4832	0.7416
40	77.4	1.8576	0.9288
50	96.8	2.3232	1.1616
64	123.7	2.9688	1.4844
80	153.9	3.6936	1.8468
100	190.3	4.5672	2.2836
125	304.1	7.2984	3.6492

X-ray Characteristics (2)

Optoelectrical response and random noise of CMOS X-ray Sensor

- Optoelectrical characteristics
 - full-resolution : the output is linear 0.46 to 4.5 mR
 - binning: the output is linear 0.58 to 2.4 mR
- Random noise
 - full-resolution : 6.38 [DN] at 0.46 [mR]
 - Binning: 21.8 [DN] at 0.58 [mR]

X-ray Characteristics (3)

Sensitivity of CMOS X-ray Sensor

[μV] **1 LSB** 63.258915

- Full-Resolution: 3893.89 [DN/mR] (≒ 0.246 [V/mR])
- Binning: 15818.48 [DN/mR] (\(\Sigma\) 1.001 [V/mR])
- The sensitivity in binning mode is the quadruple of that in full-resolution mode.

X-ray Images (1)

Foot Phantom

X-ray exposure condition: 75 [kVp] / 64 [mA]

X-ray Images (2)

Hand Phantom

X-ray exposure condition: 75 [kVp] / 64 [mA]

⇒ Based on consecutive images in full-resolution mode, image lag is negligible.

Spatial Resolution

MTF (Modulation Transfer Function)

- In full-resolution Mode, MTF at 2.54 lp/mm is 33.3%. In binning Mode, MTF at the same lp/mm is 19.6%.
- Since effective pixel pitch is reduced in binning mode, MTF is also decreased.

< Captured images of line pair set and Calculated MTF >

Future Works

Single CMOS X-ray detector

- Optimization of on-chip ADC operation to enhance image quality.
- Image post-processing
- Thallium-doped CSI (CSI:TI) scintillator direct deposition on the sensor
 - Scintillators based on CSI:TI have good absorption properties and good light collection.
 - We plan to make a sample to get high spatial resolution.

Tiled CMOS X-ray Detector

- Four single detectors are tiled to expand detector area.
 (48 x 48 [cm²])
- Also, we plan to develop control system that manage each four sensors' operation and data acquisition.

Summary

- We developed high-resolution CMOS X-ray detector based on several advantages of CMOS process.
 - A large-area 1200x1200 array CMOS image sensor with full mode(30fps) and binning mode(60fps) for mammography and fluoroscopic imaging application.
- Also, we measured results such as X-ray linearity as a function of dose, spatial resolution and X-ray images of the objects for performance evaluation with GOS scintillators
 - The more detailed characterization of our developed X-ray CMOS image sensor will be evaluated under practical mammography and fluoroscopic application conditions.
- We plan to enhance the performance of a ingle x-ray detector and to develop tiled x-ray detector process.

THANK YOU FOR YOUR ATTENTION!