



# Radiation Experience with the CMS Pixel Detector

### Viktor Veszprémi

Wigner Research Centre for Physics On behalf of the CMS Collaboration

### **PIXEL 2014**

International Workshop on Semiconductor Pixel Detectors for Particles and Imaging 1-5 September 2014, Niagara Falls, Canada

Supported by OTKA No. K 109703. and Janos Bolyai Fellowship of the Hungarian Academy of Sciences

### Overview

- The CMS pixel modules
- The LHC machine
- Radiation effects of the on-detector readout electronics
- Properties of the irradiated silicon sensors
- Detector performance



- Barrel:
  - □ 3 tracking layers
  - $\square$  R=4.3 cm, 7.2 cm, 11 cm
- End-cap:
  - $\Box$  2 disks on each side
  - □ Z=34.5 cm and 46.5 cm

## The pixel modules



- CMS under the second se
- N+-in-n sensor, 66 M pixels
- Pixel size: 100 μm x 150 μm x 285 μm
- Data sparsification of 52 x 80 pixels by Read Out Chip (ROC)

- Pixels in ROCs are arranged in 26 double columns of 160 pixels
- Double columns are aligned in the azimuthal (radial) direction in the Barrel (End-cap)





# The LHC Machine

#### CMS Peak Luminosity Per Day, pp



- Delivered pp collision data in Run 1
  7 TeV in 2010: 44.2 pb<sup>-1</sup>
  - $\Box$  7 TeV in 2011: 6.1 fb<sup>-1</sup>
  - □ 8 TeV in 2012: 23.3 fb<sup>-1</sup>
- The 2012 data-taking was interrupted by two Technical Stops (TS). Time used for
  - □ detector calibrations,
  - $\Box$  sensor studies



Improving parameters over Run 1

#### 50 ns bunch spacing forced high instantaneous luminosity

#### CMS Integrated Luminosity, pp



# Radiation effects in the ROC



- We have observed both temporary and long-term effects on the ROCs due to irradiation
  - Temporary effects are always connected with instantaneous luminosity (pile-up), a continually changing quantity that makes consistent measurements and detector studies difficult
  - □ Long-term effects are parameterized by integrated luminosity
- Most significant short-term effects:
  - □ Single Event Upset in electronics
  - □ Hit buffer overflow
  - □ Occupancy-dependent gain calibration
  - □ Threshold change due to multiple hits in double columns yet to be investigated

#### • Long term effects:

- □ Gain variation
- Drifting of pixel read-out thresholds

# Single Event Upset

- Particles from collisions can flip bits in control registers of ROCs and auxiliary electronics (Single Event Upset)
- SEU may interrupt or degrade data taking
- Solution is reprogramming electronics triggered by
  - □ Read-out front end
  - Data quality monitoring (manually)
- Entire clusters are lost, results in loss of efficiency but not in changes of cluster properties



# Hit buffer overflow

- Higher occupancy fills the internal buffers of the double columns in the ROCs faster leading to buffer overflow
  - Central region: higher chance of losing entire (small) clusters
  - $\Box$  Large- $\eta$ : long clusters are split into smaller clusters more often
- Net effect is a slight, simultaneous decrease in cluster size and charge impact is under investigation based on simulation





## Occupancy-dependent gain calibration

- Higher occupancy increases the power consumption and therefore the temperature in the ROCs
- Pixel charge gain calibration is temperature dependent
  - □ No significant change in cluster size  $\rightarrow$  effect is stronger than results of buffer overflow
  - □ Visible on all layers
- Mechanism is not yet taken into account in simulation







### Long-term variations in gain calibration

- During technical stops in 2012 (TS) thresholds were readjusted (minimized)
  - □ Slightly increased luminosity in the LHC after TS is overcome by lower thresholds
- After applying cluster charge gain calibration in offline reconstruction (GC), overall MPV decreases
  - □ Contradicts with thresholds being lower than before TS
- Pixel charge gain is also measured by charge injection
  - □ Change in units of injected charge?





# Radiation effects in the sensors

COMPARENT

- Leakage current
- Full depletion voltage
- Charge collection profile
- Lorentz-angle

## Leakage current

- Measured for each high-voltage channel in the barrel, normalized to volume of the silicon and adjusted to equivalent current at C<sup>o</sup>
- Increases proportionally with irradiation slope slows when lowering operation (coolant) temperature from 7 C° to 0 C°
- Reduced by annealing outside beam operation between 2011 and 2012





#### V. Veszprémi

#### PIXEL14, 1-5 September 2014

#### 13

- LHC beam was off-set by a few mm leading to uneven irradiation in the azimuthal angle
- Beam offset enabled us to measure the leakage current also as function of the module radius



## Leakage current



## Full depletion voltage in the Pixels

- Irradiation changes the effective doping of the sensor
  - Depletion voltage monitored regularly based on hit efficiency
  - □ Operational voltage is fixed at 150V (300V) in the barrel (end-cap) pixel detector sitting on an efficiency plateau
    - No information on charge collection efficiency measurement needs to improve
    - Consistent normalization of MPV has been difficult due to drifting thresholds and gain calibration
- Evidence for type inversion is observed in Layer 1





## Charge collection profile

- Results of radiation damage
  - □ Non-uniform electric field scalps charge collection profile
  - □ Charge carrier trapping
- Charge collection profile implies improved efficiency at higher bias voltage, but pixel charge is not properly normalized
- Effective model is used to describe data (PIXELAV: Nucl.Instr.Meth. A565(2006)212-220)
  - □ Key component in cluster position measurement
  - □ Just being integrated into official CMS simulation





Z,E

1 pixel

coordinates

Local

trac

## Lorentz-angle

- Lorentz-angle is measured close to mid-plane
  - □ Magnitude and linearity depends on bias voltage
  - □ Also evolves with irradiation
- Charge-sharing allows for better resolution in cluster position
  - Charge width may be estimated from the Lorentz-angle when computing cluster position





Lorentz-drift as function of depth in Layer 1

Lorentz-angle at various bias voltages



## Lorentz-shift

- Single Lorentz-angle value is insufficient to describe cluster position
- A "Lorentz-shift" has been measured externally based on Tracker alignment information
  - Method compares virtual module-displacement (i.e. common shift of all cluster positions) between 0T and full magnetic fields
  - $\theta_{LA}^{shift}$  is computed such that  $\Delta x = tan(\theta_{LA}^{shift}) \cdot d/2$
  - Results are confirmed by comparing drifts in inner and outward facing modules





PIXEL14, 1-5 September 2014

## Detector performance: resolution

- Resolution, along with hit detection efficiency, is the most important parameter of the Tracker
  - $\Box$  Intrinsic resolution in the pixel is ~10 µm
- Hit position is determined by cluster charge template fitting
- Resolution depends on
  - □ Stability of gain calibration
  - Pixel read-out threshold
  - Precise modeling of Lorentz-angle induced charge-sharing
  - □ ...
- Attempts at optimizing cluster parameterization by performing a scan on Lorentz-angle did not improve the resolution...



## Conclusions



- Very good performance in Run 1
- However, significant irradiation effects are just expected to appear in Run 2
- Planned improvements in detector studies/calibrations
  - □ More frequent and better understood gain calibrations
  - □ Better bias voltage characterization
  - □ More focus on studying the End-caps
- Developments in simulations and reconstructions
  - Understanding effects of efficiency loss due to buffer overflow in double columns
  - Better treatment of radiation induced changes in cluster properties by simulation