Novel Active Signal Compression in Low-noise Analog Readout at Future XFEL Facilities



## Massimo Manghisoni<sup>1</sup>

On behalf of the



### **PixFEL Collaboration**<sup>1,2,3</sup>

<sup>1</sup>INFN-Pavia & Università di Bergamo-Pavia <sup>2</sup>INFN-Pisa & Università di Pisa <sup>3</sup>INFN-TIFPA & Università di Trento

# Motivation



- The electronic instrumentation developed for FEL experiments has to satisfy severe requirements in terms of space and amplitude resolution, frame rate, input dynamic range and frame storage capability
- Covering the wide (1 to 10000 photons @ 1 keV to 10 keV) input dynamic range while preserving single photon resolution at small signals is one of the most challenging tasks
- In order to fit this dynamic range into a reasonable output signal range a strongly non-linear characteristic is required
- Signal compression can be achieved
  - at sensor level (as in the case of the DSSC)
  - at front-end level (like in the AGIPD and LPD detector)
- A novel solution, based on the non-linear features of a MOS capacitor, is proposed
- Technology TSMC 65 nm, pixel pitch of 100  $\mu$ m
- The work has been carried out in the frame of the PixFEL project<sup>1</sup> approved by the Istituto Nazionale di Fisica Nucleare (INFN) and started in 2014

<sup>&</sup>lt;sup>1</sup>G. Rizzo, "The PixFEL project: development of advanced X-ray pixel detectors for application at future X-FEL facilities"

# Outline



### Dynamic compression with MOS capacitor

Inversion-mode MOS capacitor Gain setting Improved gain accuracy

### Readout channel for FEL application

Charge sensitive amplifier with dynamic signal compression Transconductor for V-to-I conversion Time-variant filter Analog-toDigital Converter

### Readout channel performance

Channel dynamic performance System noise analysis Considerations for single photon detection



# Inversion-mode MOS capacitor

PiX FEL

Drain and source shorted to form one capacitor terminal, the gate forms the other



•  $0 < V_{G,SD} << V_{Th} \rightarrow C_{G,SD}$  is set at its minimum and it is mainly due to the overlap gate-to-source  $C_{gs,ov}$  and gate-to-drain  $C_{gd,ov}$  capacitances:

$$C_{min} pprox C_{gs,ov} + C_{gd,ov} = 2W\Delta LC_{ox}$$

W = channel width,  $\Delta L$  = extension of the overlap region,  $C_{ox}$  = gate oxide capacitance per unit area

•  $V_{G,SD} >> V_{Th} \rightarrow C_{G,SD}$  shows a maximum value which is mainly given by the gate-to-channel  $C_{gc}$  capacitance

$$C_{max} \approx C_{gc} = WLC_{ox}.$$

Basic idea: exploit the non-linear features of MOS capacitors to dynamically change the gain of Charge Sensitive Amplifier with the input signal amplitude

# Dynamic compression with MOS capacitor



• Low energy photons

$$\Delta V_{out} << V_{th} \Rightarrow C_f = C_{min}$$

• High energy photons  $\Delta V_{out} >> V_{th} \Rightarrow C_f = C_{max}$ 

### Charge Sensitive Amplifier Gain

$$G = \frac{dV_{out}}{dph}$$

### Equivalent feedback capacitance

$$C_{ef} = 280q \left[\frac{dV_{out}}{dph}\right]^{-1}$$



# Gain setting

Low Energy Gain  $(G_{le})$  (E<10 ph at 1 keV) If  $V_{out} << V_{th} \Rightarrow C_{gs} = C_{min}$  $C_{min} \approx C_{gsovl} + C_{gdovl} = 2W\Delta LC_{OX}$ 

 $G_{le} = 280q \frac{1}{2\Delta L C_{OX}} \frac{1}{W}$ 

 $\Rightarrow$  G<sub>le</sub> adjusted with the MOS channel width W

 $\begin{array}{l} \mbox{High Energy Gain } (G_{he}) \\ \mbox{If } V_{out} {>} V_{th} \Rightarrow C_{gs} {=} \ C_{max} \end{array} (E{>}10^3 \ \mbox{ph at 1 keV}) \end{array}$ 

$$C_{max} \approx C_{gs} + C_{gd} = WLC_{OX}$$
  
 $G_{he} = 280q \frac{1}{C_{OX}} \frac{1}{WL}$ 

 $\Rightarrow$  G<sub>he</sub> adjusted with the MOS channel length L





Low to High Energy Gain ratio  $(G_{le}/G_{he})$  setting

Signal compression factor (the ratio of the slopes at small and large signals) is

$$k = \frac{G_{le}}{G_{he}} = \frac{C_{max}}{C_{min}} \approx \frac{L}{2\Delta L}$$

 $\Rightarrow$  k depends only on the channel length L

Signal compression factor fixed by

$$k = \frac{ph_m - ph_k}{V_{om} - V_{ok}} G_{le} \approx \frac{ph_m}{V_{om} - V_{ok}} G_{le}$$

- V<sub>om</sub> maximum range at CSA output
- $V_{ok}$  voltage at which the kink occurs ( $\approx V_{th}$ )
- *ph<sub>m</sub>* maximum number of photons
- *ph<sub>k</sub>* number of photons at the kink (*ph<sub>k</sub>*<<*ph<sub>m</sub>*)





# Low and High Energy Gain accuracy



Gain accuracy might be affected by process parameters variation



| -  | <i>G<sub>le</sub></i> [mV/ph] | $G_{he} \; [\mu V/ph]$ |
|----|-------------------------------|------------------------|
| TT | 0.99                          | 37.6                   |
| SS | 1.06                          | 37.8                   |
| FF | 0.90                          | 37.2                   |

• Low Energy Gain inaccuracy  $\pm 10$  %

mainly due to  $\Delta L$  and  $t_{ox}$  mismatch

• High Energy Gain inaccuracy +1 %

mainly due to tox mismatch

 Output voltage range variation ±4 %

mainly due to  $V_{Th}$  mismatch

# Improved Low Energy Gain accuracy

Additional capacitance  $C_F$  in parallel to the feedback MOS



Improved feedback for  $\beta {=} 5$ 

- C<sub>F</sub>=34 fF MIM cap
- W=20  $\mu$ m and L=5  $\mu$ m

$$C_F = \left(1 - rac{1}{eta}
ight) C_{min}$$
  
 $W o rac{W}{eta} \quad ext{and} \quad L o eta \cdot$ 

with  $\beta$ >1(the higher the value of  $\beta$ , the lower the inaccuracy)





1

# Improved output voltage range accuracy



The shift in the high energy range can be (virtually) cancelled by trimming the gate-to-source voltage  $V_{GS}$  of the feedback MOS



| V <sub>sh</sub> [mV] | +38 | 0     | -39 |
|----------------------|-----|-------|-----|
| SS                   | +9  | +1060 |     |
| FF                   |     | -1060 | -3  |

Note: inaccuracy introduced by the transconductor itself and by the DAC providing  $V_{sh}$  not considered

# Complete CSA for FEL applications





### Forward gain stage

- active folded cascode (with local feedback) loaded by an active load
- Input device PMOS W/L=40/0.15

### Feedback MOS

- NMOS W/L=10/4
- NMOS W/L=9.10/4

### Improved output stage

• drive the large feedback capacitance

### Reset network

• to speed up the slew-rate limited reset phase

| Amplifier main features |         |  |  |
|-------------------------|---------|--|--|
| Open Loop DC Gain       | 60 dB   |  |  |
| Open Loop GBP           | 140 MHz |  |  |
| Phase Margin (Cef=10pF) | 52 deg  |  |  |
| Power Consumption       | 100 µW  |  |  |
|                         |         |  |  |

# Improved output stage



- The output stage must sink a current of 400  $\mu$ A in the worst case (10<sup>4</sup> ph @ 10 keV)
- Standard PMOS source-follower is not adequate since its gate-to-source voltage would severely limit the negative output voltage swing
- $\Rightarrow$  improved output stage based on the *White follower* scheme has been adopted



- M1 acts as source-follower
- $M_2$  acts as a controlled current sink providing a path for feedback capacitance current
- The current provided by M2 is controlled by the feedback loop M1, M2 and M3

# CSA response and dynamic range





- Rise time:  $t_r \approx 20$  ns for a detector signal collected in 15 ns
- Low energy gain:  $G_{le} \approx 1.0 \text{ mV/ph}$
- High energy gain:  $G_{he} \approx 25 \ \mu V/ph$
- Compression factor:  $k \approx 40$
- Dynamic range: the CSA covers the full dynamic range of 10<sup>4</sup> photons

### Equivalent Input Noise



Equivalent Noise Charge evaluation

$$ENC^2 = C_T^2 \left(\frac{A_1}{\tau}S_w + 2\pi A_2 A_f\right)$$

ENC = 50e - rms

 $\Rightarrow$  SNR=5.6 for 1 ph @ 1 keV

Dominated by the PMOS input device noise

White noise components

$$S_W = 4.16 \frac{nV}{\sqrt{Hz}}$$

1/f noise coefficient

$$A_f = 3.7 \cdot 10^{-11} V^2$$

- $C_T = C_D + C_{in} + C_f + C_{stray}$
- A<sub>1</sub>=1, A<sub>2</sub>=0.69 shaping coefficients for a trapezoidal weighting function
- $\tau = 50$  ns Integration time

# Complete readout channel





- Charge-sensitive preamplifier with dynamic signal compression
- Transconductor for voltage-to-current conversion
- Time-variant filter with gain and integration time selection options
- Analog-to-Digital conversion performed by a 10 bit SAR ADC

# Transconductor for V-to-I conversion



Wide input range (0.5 V)  $\Rightarrow$  additional circuit (in red) to linearize the characteristic



# Gated integrator: Flip Capacitor Filter



Events with a known repetition rate  $\Rightarrow$  time variant shaping

۰ Reduced time to return to base, provides the sample to ADC at its output

### Trapezoidal weighting function

Gated integrator and Correlated Double Sampling (CDS)

### Flip Capacitor Filter<sup>2</sup>

• Trapezoidal weighting function achieved by flipping the feedback capacitor  $C_F$ 



L. Bombelli, C. Fiorini, S. Facchinetti, M. Porro, G. De Vita, NIM, vol. 624, pp. 360-366, 2010.

# 10-bit Successive Approximation Register ADC

- guarantees single photon resolution at small signal
- small quantization noise in Poisson-limited regime
- 5 MHz sample rate (for operation at the Eu-XFEL) SAR ADC
- Clock frequency = 5 MHz  $\times$  11 = 55 MHz

### DAC Architecture

2 standard splitted Capacitive DAC in a pipeline structure to avoid high current peaks

- an entire conversion period dedicated to precharge one DAC input capacitance (≈2.5 pF)
- while the other DAC performs the conversion

### Present simulation results

- C<sub>min</sub>= 35 fF to ensure 3σ matching within 0.5 LSB
- Area  $\approx$  5000  $\mu m^2$
- Static Power Consumption  $\approx$  70  $\mu W$
- Average power consumption in a conversion period  $\approx$  85  $\mu$ W
- SNR = 57.75 dB
- ENOB = 9.3





# Filter transient response



- Channel simulated by referring to the time constraints of the Eu-XFEL laser  $\Rightarrow$  macro bunches of light pulses separated from each other by 200 ns
- The period has been subdivided into four equal intervals  $\Rightarrow$  integration time au= 50 ns



Weighting function: the deviation from the ideal trapezoidal shape is due to the switches timing and to the finite rising time of the CSA

# Channel dynamic performance





- ADC dynamic range well covered
- Bilinear characteristic
- 2 ADC bins attributed to 1 photon in the linear region
- First 10 photons well detected

# System noise analysis

### **Electronics** Noise

- due to the analog front-end
- increases with the increase of the signal
- ENC 60 e- rms @  $\tau$ =50 ns
  - $\Rightarrow$  SNR of 4.6 for single photon

### Quantization noise

- introduced by the ADC
- Very low number of incoming photons linear region ⇒ no quantization noise
- High number of collected photons  $\approx$  number of photons attributed to the same bin divided by  $\sqrt{12}$

# Noise of the Poisson distributed photon generation process

### Conclusion

The total noise of the system is dominated by the Poisson photon generation noise





# Single photon detection





### Assume

• Gaussian distribution for the electronic noise with

ENC = 60e - rms

 ADC threshold of the 2<sup>nd</sup> bin placed @ 1<sup>st</sup> photon

- The probability that a zero signal is misinterpreted as a one photon signal is 1%
- The probability that 1 photon signal is correctly attributed to the first 2 bins is 98%

# Pixel overview



100 um – 100 um -

### Area occupancy



### Power Consumption





- A novel active signal compression based on the non-linear features of a MOS capacitor has been investigated
- The front-end has been included in a readout channel for operation at FEL facilities
- Circuit simulations have shown that the proposed read-out channel
  - $\,\circ\,$  achieves a dynamic range of  $10^4$  photons at 1 or 10 keV
  - $\circ~$  preserve at the same time single 1 keV photon resolution with 98% accuracy
  - $\circ~$  can be operated at a rate of 5MHz
- A test chip including single test structures and an  $8\times 8$  matrix will be submitted at the end of September 2014



# Backup Slides



# AB class amplifier to drive the large (2.5 pF) A deliver currents larger than the quiescent value Image: Constraint of the provided state of the provi

| Amplifier main features |            |  |  |  |
|-------------------------|------------|--|--|--|
| DC Gain                 | 53 dB      |  |  |  |
| GBP                     | 402 MHz    |  |  |  |
| Phase Margin            | 62 deg     |  |  |  |
| Power                   | 45 $\mu$ W |  |  |  |

Filter amplifier

- Two stages AB class Operational Transconductance Amplifier (OTA)
- AB class amplifier to drive the large (2.5 pF) ADC capacitance since it is able to deliver currents larger than the quiescent value

Vout

