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Motivation

• The electronic instrumentation developed for FEL experiments has to satisfy severe
requirements in terms of space and amplitude resolution, frame rate, input dynamic
range and frame storage capability

• Covering the wide (1 to 10000 photons @ 1 keV to 10 keV) input dynamic range while
preserving single photon resolution at small signals is one of the most challenging tasks

• In order to fit this dynamic range into a reasonable output signal range a strongly
non-linear characteristic is required

• Signal compression can be achieved

◦ at sensor level (as in the case of the DSSC)

◦ at front-end level (like in the AGIPD and LPD detector)

• A novel solution, based on the non-linear features of a MOS capacitor, is proposed

• Technology TSMC 65 nm, pixel pitch of 100 µm

• The work has been carried out in the frame of the PixFEL project1 approved by the
Istituto Nazionale di Fisica Nucleare (INFN) and started in 2014

1
G. Rizzo, “The PixFEL project: development of advanced X-ray pixel detectors for application at future X-FEL facilities”

2 of 24



Outline

Dynamic compression with MOS capacitor
Inversion-mode MOS capacitor
Gain setting
Improved gain accuracy

Readout channel for FEL application
Charge sensitive amplifier with dynamic signal compression
Transconductor for V-to-I conversion
Time-variant filter
Analog-toDigital Converter

Readout channel performance
Channel dynamic performance
System noise analysis
Considerations for single photon detection

3 of 24



Inversion-mode MOS capacitor
Drain and source shorted to form one capacitor terminal, the gate forms the other
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• 0 < VG ,SD << VTh → CG ,SD is set at its minimum and it is mainly due to the
overlap gate-to-source Cgs,ov and gate-to-drain Cgd,ov capacitances:

Cmin ≈ Cgs,ov + Cgd,ov = 2W∆LCox

W = channel width, ∆L = extension of the overlap region, Cox = gate oxide
capacitance per unit area

• VG ,SD >> VTh → CG ,SD shows a maximum value which is mainly given by the
gate-to-channel Cgc capacitance

Cmax ≈ Cgc = WLCox .

Basic idea: exploit the non-linear features of MOS capacitors to dynamically change the

gain of Charge Sensitive Amplifier with the input signal amplitude
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Dynamic compression with MOS capacitor

in out

gnd

-

W/L 

R oo
outV

inQ

in out

Vdd

-

W/L 

R oo
outV

inQ

electrons holes

NMOS
input

PMOS
input

• Low energy photons

∆Vout << Vth ⇒ Cf = Cmin

• High energy photons
∆Vout >> Vth ⇒ Cf = Cmax

Charge Sensitive Amplifier Gain
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Gain setting

Low Energy Gain (Gle) (E<10 ph at 1 keV)

If Vout<<Vth ⇒ Cgs= Cmin

Cmin ≈ Cgsovl + Cgdovl = 2W∆LCOX

Gle = 280q
1
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High Energy Gain (Ghe) (E>103 ph at 1 keV)

If Vout>Vth ⇒ Cgs= Cmax

Cmax ≈ Cgs + Cgd = WLCOX

Ghe = 280q
1
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Low to High Energy Gain ratio (Gle/Ghe) setting

Signal compression factor (the ratio of the
slopes at small and large signals) is

k =
Gle

Ghe
=

Cmax

Cmin
≈

L

2∆L

⇒ k depends only on the channel length L
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Gle ≈
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• Vom maximum range at CSA output

• Vok voltage at which the kink occurs (≈ Vth)

• phm maximum number of photons

• phk number of photons at the kink (phk<<phm)

Vo

ph

Vom

Vok

phmphk

L

7 of 24



Low and High Energy Gain accuracy

Gain accuracy might be affected by process
parameters variation
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• Low Energy Gain inaccuracy

±10 %

mainly due to ∆L and tox mismatch

• High Energy Gain inaccuracy

±1 %

mainly due to tox mismatch

• Output voltage range variation

±4 %

mainly due to VTh mismatch
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Improved Low Energy Gain accuracy

Additional capacitance CF in parallel to the feedback MOS
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Improved output voltage range accuracy

The shift in the high energy range can be (virtually) cancelled by trimming the
gate-to-source voltage VGS of the feedback MOS
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Complete CSA for FEL applications
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Forward gain stage

• active folded cascode (with local
feedback) loaded by an active load

• Input device PMOS W /L=40/0.15

Feedback MOS

• NMOS W /L=10/4

• NMOS W /L=9·10/4

Improved output stage

• drive the large feedback capacitance

Reset network

• to speed up the slew-rate limited
reset phase

Amplifier main features

Open Loop DC Gain 60 dB

Open Loop GBP 140 MHz

Phase Margin (Cef=10pF) 52 deg

Power Consumption 100 µW
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Improved output stage

• The output stage must sink a current of 400 µA in the worst case (104 ph @ 10 keV)

• Standard PMOS source-follower is not adequate since its gate-to-source voltage would
severely limit the negative output voltage swing

• ⇒ improved output stage based on the White follower scheme has been adopted
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• M1 acts as source-follower

• M2 acts as a controlled current sink providing a path for feedback capacitance current

• The current provided by M2 is controlled by the feedback loop M1, M2 and M3
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CSA response and dynamic range
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• Rise time: tr≈20 ns for a detector signal collected in 15 ns

• Low energy gain: Gle ≈ 1.0 mV/ph

• High energy gain: Ghe ≈ 25 µV/ph

• Compression factor: k ≈ 40

• Dynamic range: the CSA covers the full dynamic range of 104 photons
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CSA noise performance

Equivalent Input Noise
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Dominated by the PMOS input device noise

• White noise components

SW = 4.16
nV
√
Hz

• 1/f noise coefficient

Af = 3.7 · 10−11V 2

Equivalent Noise Charge evaluation

ENC2 = C2
T

(
A1

τ
Sw + 2πA2Af

)
ENC = 50e − rms

⇒ SNR=5.6 for 1 ph @ 1 keV

• CT =CD + Cin + Cf + Cstray

• A1=1, A2=0.69 shaping coefficients for a
trapezoidal weighting function

• τ =50 ns Integration time
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Complete readout channel
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• Charge-sensitive preamplifier with dynamic signal compression

• Transconductor for voltage-to-current conversion

• Time-variant filter with gain and integration time selection options

• Analog-to-Digital conversion performed by a 10 bit SAR ADC
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Transconductor for V-to-I conversion

Wide input range (0.5 V) ⇒ additional circuit (in red) to linearize the characteristic
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Gated integrator: Flip Capacitor Filter
Events with a known repetition rate ⇒ time variant shaping

• Reduced time to return to base, provides the sample to ADC at its output

Trapezoidal weighting function

• Gated integrator and Correlated Double Sampling (CDS)

Flip Capacitor Filter2

• Trapezoidal weighting function achieved by flipping the feedback capacitor CF
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L. Bombelli, C. Fiorini, S. Facchinetti, M. Porro, G. De Vita, NIM, vol. 624, pp. 360-366, 2010.
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10-bit Successive Approximation Register ADC

• guarantees single photon resolution at small
signal

• small quantization noise in Poisson-limited
regime

• 5 MHz sample rate (for operation at the
Eu-XFEL) SAR ADC

• Clock frequency = 5 MHz × 11 = 55 MHz

DAC Architecture

2 standard splitted Capacitive DAC in a
pipeline structure to avoid high current peaks

• an entire conversion period dedicated to
precharge one DAC input capacitance
(≈2.5 pF)

• while the other DAC performs the
conversion

Present simulation results

• Cmin= 35 fF to ensure 3σ matching
within 0.5 LSB

• Area ≈ 5000 µm2

• Static Power Consumption ≈ 70 µW

• Average power consumption in a
conversion period ≈ 85 µW

• SNR = 57.75 dB

• ENOB = 9.3
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Filter transient response

• Channel simulated by referring to the time constraints of the Eu-XFEL laser
⇒ macro bunches of light pulses separated from each other by 200 ns

• The period has been subdivided into four equal intervals ⇒ integration time τ = 50 ns
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Channel dynamic performance
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• ADC dynamic range well covered

• Bilinear characteristic

• 2 ADC bins attributed to 1 photon in the linear region

• First 10 photons well detected
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System noise analysis

Electronics Noise

• due to the analog front-end

• increases with the increase of the signal

• ENC 60 e- rms @ τ=50 ns

⇒ SNR of 4.6 for single photon

Quantization noise

• introduced by the ADC

• Very low number of incoming photons
linear region ⇒ no quantization noise

• High number of collected photons
≈ number of photons attributed to the
same bin divided by

√
12

Noise of the Poisson distributed photon
generation process

Conclusion
The total noise of the system is dominated
by the Poisson photon generation noise
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Single photon detection
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• Gaussian distribution for the
electronic noise with

ENC = 60e − rms

• ADC threshold of the 2nd bin
placed @ 1st photon

• The probability that a zero signal is misinterpreted as a one photon signal is 1%

• The probability that 1 photon signal is correctly attributed to the first 2 bins is 98%
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Pixel overview
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Conclusions

• A novel active signal compression based on the non-linear features of a
MOS capacitor has been investigated

• The front-end has been included in a readout channel for operation at
FEL facilities

• Circuit simulations have shown that the proposed read-out channel

◦ achieves a dynamic range of 104 photons at 1 or 10 keV
◦ preserve at the same time single 1 keV photon resolution with 98% accuracy
◦ can be operated at a rate of 5MHz

• A test chip including single test structures and an 8×8 matrix will be
submitted at the end of September 2014
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Backup Slides
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Filter amplifier

• Two stages AB class Operational Transconductance Amplifier (OTA)

• AB class amplifier to drive the large (2.5 pF) ADC capacitance since it is able to
deliver currents larger than the quiescent value

Vin+Vin- Vout

CL

Amplifier main features

DC Gain 53 dB

GBP 402 MHz

Phase Margin 62 deg

Power 45 µW
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