TDCpix - Pixel Read-out ASIC with 100 ps Time-tagging Capability for the NA62 Gigatracker Experiment

 $\label{eq:main_state} \underbrace{ \begin{array}{ccc} \underline{\mathsf{M}}. \ \mathsf{Noy}^a & \mathsf{G}. \ \mathsf{Aglieri} \ \mathsf{Rinella}^a & \mathsf{S}. \ \mathsf{Bonacini}^a & \mathsf{J}. \ \mathsf{Kaplon}^a & \mathsf{A}. \ \mathsf{Kluge}^a \\ & \mathsf{M}. \ \mathsf{Morel}^a & \mathsf{L}. \ \mathsf{Perktold}^a & \mathsf{K}. \ \mathsf{Poltorak}^a \end{array} }$

^aCERN, CH-1211 Geneva 23, Switzerland

3rd Sept. 2014

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance

Pixel Jitter: Test Output TDC Performance Full Chain Performance

Summary

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance Pixel Jitter: Test Output TDC Performance Full Chain Performance

Summary

The NA62 Experiment

Trajectory

- momentum
- angle

Time

- correlate hits with RICH
- $\leq 200 \, ps(RMS)$ per station

Pixel 2014, $1^{
m st}$ -5 $^{
m th}$ Sept. 2014, Niagara Falls, Canada

Introduction to NA62 and the GigaTracker

GTK Station in the Beam Line

▶ in vacuum ▶ centred on the beam ▶ $0.8 \rightarrow 1 \text{ GHz}$ beam rate

Introduction to NA62 and the GigaTracker

Pixel 2014, 1^{st} -5 th Sept. 2014, Niagara Falls, Canada

7000 6000 4000 2000 00 2 4 6 8 10 12 14 16 18 20 Charge [C] Charge [C]

- Planar P-on-N
- ▶ Thickness: 200µm
- $V_{bias} \sim$ 300-600V
- charge release mechanism is stochastic
- Landau distribution
 - $Q_{MP} = 2.4 fC$
 - ▶ $1 fC \le Q \le 10 fC$
- Segmented electrodes give spatial information

3rd Sept. 2014 6

Pre-Amplifier & Discriminator Signals

matthew.noy@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014

Pre-Amplifier & Discriminator Signals

matthew.noy@cern.ch

Pixel 2014, $1^{
m st}$ - $5^{
m th}$ Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance

Pixel Jitter: Test Output TDC Performance Full Chain Performance

Summary

- 40 x 45 pixels
 - ▶ 300x300 µm²
 - asynchronous

- 40 x 45 pixels
 - ▶ 300x300 µm²
 - asynchronous
- End-Of-Column
 - per-pixel hit signal to EOC

- ▶ 40 x 45 pixels
 - ► 300x300 µm²
 - asynchronous
- End-Of-Column
 - per-pixel hit signal to EOC
- 360 dual TDC channels
 - TDC Bin size $\sim 97 \, ps$

- ▶ 40 x 45 pixels
 - ► 300x300 μm^2
 - asynchronous
- End-Of-Column
 - per-pixel hit signal to EOC
- 360 dual TDC channels
 - TDC Bin size $\sim 97 \, ps$
- self-triggered operation
 - Rate:210MHits/s
 - ▶ 4 x 3.2 Gb/s serialisers

- ► 300x300 µm²
- asynchronous
- End-Of-Column
 - per-pixel hit signal to EOC
- 360 dual TDC channels
 - TDC Bin size $\sim 97 \, ps$
- self-triggered operation
 - Rate:210MHits/s
 - ▶ 4 × 3.2 *Gb/s* serialisers
- SEE Tolerant
 - state/config.

The TDCPix Chip Architecture

Pixel 2014, 1st-5th Sept. 2014, Niagara <u>Falls, Canada</u>

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 9 / 25

-

Pixel 2014, 1^{st} - 5^{th} Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 9 / 25

-

Simplified Pixel Architecture

- Gain $\sim 65 \, mV/fC$
- peaking time $\sim 5\,ns$
- ▶ ENC < $250 e^-$

- Polarity control
- Pixel mask
- TX with pre-emphasis

ъ.

Pixel Layout:

$300 \mathrm{x} 300 \mu m^2$ cell

Pixel Layout: Signal Path

3rd Sept. 2014

≡ •ીલ 11 / 25

Pixel Layout: Trimming & Configuration

In-Pixel Configuration

- < A

Pixel Layout: Noise Mitigation

Triple Well **BFMOAT** Substrate Isolation Signal Shielding Thick Oxide Caps

- Triple well (input transistor)
- BFMOAT substrate isolation
- signal shielding
- Power supply decoupling

The TDCPix Chip Architecture

FDC: Schematic and Layout

matthew.nov@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

The TDCPix Chip Architecture

FDC: Schematic and Layout

3rd Sept. 2014 13

TDCPix Wire Bonded to the Test Card

TDCPix Wire Bonded to the Test Card

matthew.noy@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

TDCPix Wire Bonded to the Test Card

TDCPix Wire Bonded to the Test Card

matthew.noy@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

TDCPix Wire Bonded to the Test Card

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance Pixel Jitter: Test Output TDC Performance Full Chain Performance

Summary

Functionality Tested

Block	Status	Remarks
Configuration	Working	5 chips tested
PLL	Working	3.2 GHz
Serialisers	Working	3.2 Gb/s
Bandgaps	Working	
Temperature Interlock	Working	
Column Biasing	Working	200 DACs
In-Pixel Threshold Trimming	Working	1800 DACs
# of bugs detected	0	

First Working Silicon

= nar

15 / 25

▲ @ ▶ ▲ Э

Full Pixel Array Gain & ENC Distributions

$$\label{eq:Gain} \begin{split} <\mathsf{Gain}\!>&= 62\,\text{mV/fC}\\ \mathsf{Spread} &= 1.1\,\text{mV/fC} \end{split}$$

$$<$$
ENC $> = 170e^{-}$ No sensor

(日) (周) (三) (三)

ELE NOR

Pixel Jitter: Test Output

3rd Sept. 2014 17 / 25

TDC Performance

TDC Test Input: Code Density Histograms

- 16 million random (unsynchronised) triggers
- bin content gives width estimate

TDC Test Input: Transfer Curves

Bin widths give the transfer curve

TDC Test Input: INL

transfer curves give the INLs

Leading/Trailing INL: All TDC Channels

Distribution of Leading Fine INL

Distribution of Trailing Fine INL

RMS INL \sim 0.15 LSBs

- 一司

TDC Performance

- Pixel Matrix not involved in measurement
- ► Two clock periods (2*3.125ns)
- Step: 10 ps
- ► 3.10⁴ triggers/pt.

- < A

TDC Performance

- Pixel Matrix not involved in measurement
- ► Two clock periods (2*3.125ns)
- Step: 10 ps
- ► 3.10⁴ triggers/pt.

- < A

TDC Resolution

Resolution (Mode of the RMS dist.) \sim 58 ps

- clock/pulse generator synchronisation contributes $\sim 30 \, ps \; {\sf RMS}$
- contribution from signal distribution in the chip unknown

matthew.noy@cern.ch

Full Chain Performance

Full Chain Behaviour

T1 Pixel Jitter Summary for 32 phases for column pair 0, pixel 0

- trigger swept through full clk cycle
 - 32 phases
 - Step:100ps
- 10⁴ triggers per phase
- No sensor present

3rd Sept. 2014 22 / 25

Full Chain Behaviour

T1 Pixel Jitter Summary for all Pixels

- trigger swept through full clk cycle
 - 32 phases
 - Step:100ps
- 10⁴ triggers per phase
- No sensor present

3rd Sept. 2014 22 / 25

TimeWalk-Corrected Time Resolution

Introduction to NA62 and the GigaTracker

The TDCPix Chip Architecture

Measured Performance Pixel Jitter: Test Output TDC Performance Full Chain Performance

Summary

Summary

- NA62: Ultra Rare Kaon decay measurement
 - huge beam rate \rightarrow massive background reduction
 - GTK Time Tagging <200ps per station

Summary

- ► NA62: Ultra Rare Kaon decay measurement
 - \blacktriangleright huge beam rate \rightarrow massive background reduction
 - ► GTK Time Tagging <200ps per station

TDCPix Architecture

- 1800 pixel End-of-Column chip
- 20mm x 12mm
- self-triggering architecture
- 4 x 3.2Gb/s on-chip serialisers

Summary

- ► NA62: Ultra Rare Kaon decay measurement
 - \blacktriangleright huge beam rate \rightarrow massive background reduction
 - ► GTK Time Tagging <200ps per station
- TDCPix Architecture
 - ▶ 1800 pixel End-of-Column chip
 - 20mm x 12mm
 - self-triggering architecture
 - ▶ 4 × 3.2Gb/s on-chip serialisers
- TDCPix Performance is excellent
 - First working silicon
 - Pixel jitter < 60 ps RMS at 2.5fC</p>
 - TDC gives <60 ps RMS time resolution</p>
 - Full chain works as expected < 65 ps RMS at 2.5fC</p>
 - Time Walk Correction Works as expected
 - $\blacktriangleright\,$ "Whole Chip" Resolution \sim 72 ps RMS

24 / 25

Thanks for your attention!!

I= nan

< 🗇 🕨

Backups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Backup Slides

-

Demonstrator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

EoC Chip & Assembly

- What is the limit of the timing resolution attainable?
- Where does this limit come from?

Summary of Results

Transmission Line Uniformity T_1 RMS Jitter: ASIC

Pixel 2014, $1^{
m st}$ - $5^{
m th}$ Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 28 / 25

Backups Summary of Results

RMS T_0 Jitter Vs Q: Assembly (@ 300V) + Laser

- Full event time reconstruction done
- EoC activity doesn't feed through to the pixels

- detector bias = 300 V
- \blacktriangleright average case $\sim 75\,ps$ at $2.4\,fC$

3rd Sept. 2014 29

29 / 25

Beam Test: Time Resolution Vs Detector Bias

M. Fiorini

3rd Sept. 2014

30 / 25

Time Resolution Limits

- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps

G. Aglieri Rinella

Time Resolution Limits

- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps
- Charge straggling also contributes
 - inhomogeneities in charge deposition
 - adds > 60ps

G. Aglieri Rinella

Time Resolution Limits

- induced current pulse on electrode changes shape
 - pre-amp output changes shape
 - ► adds ~85ps
- Charge straggling also contributes
 - inhomogeneities in charge deposition
 - adds > 60ps
- uncorrectable contributions for current sensor

G. Aglieri Rinella

3rd Sept. 2014

31 / 25

Hit Arbiter

◆□>
◆□>
●□>
●□>
●□>
●□>

DLL & Hit Registers

TDC: DLL & Fine Registers

= 990

PLL & Serialisers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

matthew.noy@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 34 / 25

matthew.noy@cern.ch

Pixel 2014, 1st-5th Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 34 / 25

matthew.noy@cern.ch

Pixel 2014, $1^{
m st}$ - $5^{
m th}$ Sept. 2014, Niagara Falls, Canada

 3^{rd}

matthew.noy@cern.ch

Pixel 2014, 1^{st} - 5^{th} Sept. 2014, Niagara Falls, Canada

3rd Sept. 2014 34 / 25

Serial Outputs at 3.2Gb/s

- Idle words correct
 - synchronisation works

- ► Total Jitter < 150 ps
- ▶ FPGA GTX recv. lock reliably

(日) (周) (三) (三)

DAQ works reliably

ELE NOR

Pixel Behaviour

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

S-Curves \rightarrow Pre-Amp Transfer Function

- Q_{injected} adjusted for CAL DAC gain
- \blacktriangleright Transfer fit \rightarrow discriminator offset and front end gain
- Polarity setup for a hole signal
 - P-on-N sensor (baseline)
 - "electron" polarity works too

Trim and TRANGE Functionality

How low will the threshold go?

- All pixels enabled (& trimmed)
- Pink: minimum threshold $\sim 0.26 fC$ (1600e⁻)
- Blue: nomimal threshold 0.7 fC

Top Level Test Bench

ELE DQC

イロト イポト イヨト イヨト