Silicon as **Pixel Sensor Material at Extreme Fluences** upito 10¹⁷ n/cm²

Marko Mikuž

University of Ljubljana & Jožef Stefan Institute

Pixel 2014, Niagara Falls September 4th, 2014

The Ljubljana Team

- Those who did all the work:
 Vladimir Cindro
 Gregor Kramberger
 Igor Mandić
 Marko Zavrtanik
- A big thanks to them !

Why the 10¹⁷ Ballpark ?

40

• Run1 at LHC finished, 2&3 in sight

- Designed for 730 fb⁻¹ of 14 TeV pp collisions, ~30 fb⁻¹ in Run1
- Will probably get ~½ of planned
- HL-LHC in advanced planning
 - 3000 fb⁻¹ i.e. ~10xLHC
 - ~10¹⁶ n_{eq}/cm² for pixels (pions)
 - nx10¹⁶ n[']_{eq}/cm² for vFW pixels (π & n)
 - ~10¹⁷ n_{eq}/cm² for FCAL (neutrons)
- Can (tracking) sensors survive in these extreme environments ?

1 MeV neutron equivalent fluence

6.2 x 10⁵

1.5x10¹⁷ n/cm²

Niagara Falls, Sep 4, 2014

Marko Mikuž: Silicon...

4.7 x 10⁵

Tracking sensors

- Convert charged particle ionization into measurable electrical signal
- Sensor segmentation provides position info
 - 2-D: strips, 3-D: pixels
 - Resolution d/v(12) (binary) or better (analogue charge division)
- Tracking: many layers, keep occupancy < 1 %
- Considerations
 - Signal to (electronics) noise, threshold
 - Radiation hardness
 - Manufacturability
 - Large scale production
 - Engineering (electrical, thermal, mechanical)
 - Material budget
 - Price
- Paradigm might change for FCAL
 - Jet reco: multiple hits/segment, no real tracking...

How far can we go with Si?

- Special run of "spaghetti" diodes to address this
 - All strips connected to one readout
 - Strip electric field, equal weighting field (~pad)
 - Different implants (double diffusion, energy)
- Irradiated with reactor neutrons in steps
 - 3, 10x10¹⁵ -> 5 samples annealed
 - $-2, 4, 8 \times 10^{16}, 1.6 \times 10^{17} n_{eq}/cm^2 6$ standard samples
- *I(V), Q_{MP}(V)* and noise on ⁹⁰Sr set-up at -25°C
 - Trigger purity allows measurements at low S/N

Marko Mikuž: Silicon...

wafers	2488-7	2885-5	2935-10	2912-2, 3	2551-4	
	2935-2,3,4,5,7,9					
type	spaghetti	spaghetti,thin	spaghetti	spaghetti	pad detector	
process	standard	standard,	double energy	double diffusion	standard	
thickness	300 µm	150 µm	300 µm	300 µm	300 µm	
V_{fd}	$\approx 90 \text{ V}$	$\approx 30 \text{ V}$	$\approx 90 \text{ V}$	$\approx 90 \text{ V}$	$\approx 50 \text{ V}$	

pad detector Amplifier +shaper thermal insulation Peltier cooler water cooled heat sink

ganged strips

Silicon is still alive!

Up to 1.6x10¹⁷ n_{eq}/cm², steps 1, 2, 4, 8x10¹⁶
 Annealing 80 mins @ 60°C between steps

 "Magic" – no underlying physics... in fact lots of it Mix of depletion, trapping and charge multiplication Niagara Falls, Sep 4, 2014 Marko Mikuž: Silicon...

Niagara Falls, Sep 4, 2014

Marko Mikuž: Silicon...

8

Can we explain the signal ?

- Extensive efforts have been going on to model irradiated silicon from "first principles"
 - Trap parameters -> models (semi-analytic, TCAD)
- The problem, nicely formulated by Michael Moll "There is no shortage of traps in irradiated silicon..."
- Signal governed by Ramo theorem
 - E_w depends solely on geometry, can be calculated
 - E problematic for modeling
- Can we measure it ?

$$I(t) = q \cdot v \cdot E_w =$$
$$= q \cdot \mu(E) \cdot \vec{E} \cdot \vec{E}_w$$

Edge TCT

- Inspired by beam grazing technique introduced by R. Horisberger to study *CCE* in pixel detectors
- Edge-TCT
 - Replace small angle beam by edge-on IR laser perpendicular to strips, detector edge polished
 - Focus laser under the strip to be measured, move detector to scan,
 - Measure induced signal with fast amplifier with sub-ns rise-time (TCT)
 - 8 μm FWHM under the chosen strip, fast (40 ps) and powerful laser
 - Caveat injecting charge under all strips effectively results in constant weighting (albeit not electric !) field

Electric Field Measurement

- Initial signal proportional to velocity sum at given detector depth
- **Caveats for field extraction**
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with v_{sat} hit electrode in 500 ps
 - Mobility depends on E
 - *v* saturates for *E* >> 1V/μm

$$I(t=0) = q \cdot v \cdot E_w =$$
$$= N_{e-h} e_0 \cdot (v_e + v_h)/d =$$
$$= N_{e-h} e_0 \cdot (\mu_e + \mu_h) \cdot E(x)/d$$

- Very instructive regarding qualitative electric field shape
 - Non-irradiated "by the book" for abrupt junction n⁺p diode
 - SCR and ENB nicely separated, small double junction near backplane
 - Medium fluence (Φ=10¹⁵ neutrons): some surprise
 - Smaller space charge than expected in SCR, some field in "ENB"
 - Large fluence (Φ =10¹⁶): full of surprises
 - Still lower space charge, sizeable field in "ENB"
 - CM additional trouble for interpretation at large V
- Can we bring these observations to quantitative level ?

Field Modeling: Regions

- Detectors exhibit three distinct regions
 - Space Charge Region at main junction, negative SC
 - SCR at backplane, positive SC
 - Electrically Neutral Bulk in-between
 - Remember: *E*=const => no space charge
- Determine extent of each region by geometrical fits

Niagara Falls, Sep 4, 2014

- Turn y_{act} into N_{eff}
 - assuming constant SC, and no
 V drop in ENB and SCR_{BP}

$$y_{act} = \sqrt{\frac{2 \,\varepsilon_{Si} V_{bias}}{e_0 \, N_{eff}}}$$

Niagara Falls, Sep 4, 2014

Marko Mikuž: Silicon...

Main SCR - Description

$$\frac{\Delta N_{eff}}{\Phi_{eq}} = \frac{N_{eff} - N_{eff,0}}{\Phi_{eq}} \approx g_c + g_{ba} \exp(-t/\tau_{ba})$$

- rescale g_{ba} by $\Phi_{total} / \Phi_{last step}$

- Clear non-linearity of stable acceptor generation
- Mechanism unknown, but there is plenty of dynamics going on in (heavily) irradiated semiconductors
- Whatsoever happens here, it is good for us !

F_eq	g_c	g_ba	t_ba
1e15 cm^-2	cm^-1	cm^-1	min
1	0.0176	0.0085	17.20
2	0.0135	0.0088	20.50
5	0.0078	0.0069	26.25
10	0.0055	0.0040	27.80

Field Modeling: Field Value

100

$$I(t \approx 600 \text{ ps}, y) \propto v_e + v_h = (\mu_e + \mu_h) \cdot E(y)$$

- Invert to get E(y) ? Caveat:
 μ=μ(E), need scale of E to invert
- Scale from $\int E(y)dy = V$? Not really:
 - Poorly known large field at electrode contributes sizably to the integral
- Measured "I(t)" is in fact a convolution of the induced signal with electronics transfer function H(t)
- Further *I(t)* plagued by
 - Inhomogeneity of *E(y)* close to *y*
 - Trapping reducing *l(t)*
 - Charge multiplication boosting *l(t)*

$$(t) \propto \int_{0}^{t} (\mu_{e} + \mu_{h}) \cdot E(y(t'))H(t-t')dt'$$

Case We Know: Non-Irradiated

- Assume abrupt junction, constant SC
- No trapping, no CM
- At 500 V
 - 180 V (FDV) to linear E
 - 320 V to constant E
 - $-E = (1.1 + 1.2 \times (w-y)) V/\mu m$
 - 2.1 V/μm @ y=50 μm
- In v_{sum}(y): 1.62(a.u.) translates to 131 μm/ns
- Can invert *E(v_{sum})*

Can we scale to irradiated Si?

- Keep scale for v_{sum}
- Trivial: use v(E) for -20°C instead of 20°C
 - big effect at high v_{sum}
- Not so obvious: keep same laser input
 - expect ~10%, in fact looks even better

Trapping

• Naïve trapping – reduce I(t) by $e^{-t/\tau}$

- Independent of *E*, so *v*_{sum} just scaled up
- But τ << t at 10¹⁶ no signal ??
- Have to invoke transfer function H(t)
 - Reproduce *I(t)* for non-irradiated
 - Model as CR-RC⁴ with t_{sh} = 0.8 ns
- Trapping correction with *H(t)*
- Correction calculated for nominal trapping times $\tau_e = \tau_h = 1/\beta \Phi$ with $\beta = 4 \times 10^{-16} \text{ cm}^{-2} \text{s}^{-1}$
- *v_{sum}* scale boosted by +10% -> ×2
 For 10¹⁶ scale exceeds physical limit !

- At 5x10¹⁵ and 10¹⁶ no clear saturation in v_{sum} observed
- Taking nominal trapping correction both v_{sum} exceed v_{sum,sat} = 190 μm/ns (2.35 a.u.×C_{trap})
- Clear sign of charge multiplication close to electrode
- Difficult to model, so give up modeling this region

ENB Description

- Si @ 10¹⁶ full of defects, so how do we get Electrically Neutral Bulk ?
 - Honestly, I do not know, but at low V there is a large region with constant v_{sum} thus constant E
 - Constant E implies no (net) space charge
 - Generation current is known to generate linear space charge dependence due to charging up traps
 - Thus no generation current ?
 - Thermal quasi-equilibrium, implying $np = n_i^2$ so ENB ??

ENB Sanity Check

- Usually *E=0* assumed in ENB
 - No signal due to charge recombination
- Heavily irradiated Si
 - Large I_{leak} , high resistivity ρ
 - Need sizable *E* to transport *I*_{leak} across
 ENB
- Model 10¹⁶ @ 100 V
 - $-g_c$ from SCR fit, ρ close to max
 - I_{leak} generated in SCR transported through ENB by $j=E_{ENB}/\rho$
 - Linear rise of E_{SCR}
 - V divided between SCR and ENB in a self-consistent way (quadratic equation)

Result

 w_{SCR} = 56 µm E_{FNR} = 0.053 V/µm

Too good for coincidence ! But what about trapping ?

larger by ~2

electron trapping rate [1/100ns]

23

- required
- Hints presented by RD50

• ENB not contributing to I_{leak}

Significant I_{leak} reduction

Observed in 10¹⁷ exercise

Very important for detector

operation (noise, power) !

 Can we measure trapping directly?

Trapping would require v_{sum} -> E

Signal Modeling

- Method: extract trapping from *l(t)* quenching by trapping
- Modeling in Mathematica
 - Input: shaping CR-RC⁴, t_{sh} = 0.8 ns, nominal trapping, reduced trapping by ×2, 3
 - v(E), $E = 0.05 V/\mu m$ irrelevant for I(t) shape
 - Calculate I(t), convolute with shaping H(t)

Niagara Falls, Sep 4, 2014

Marko Mikuž: Silicon...

• Measured *I(t)* in E-TCT 10¹⁶ @ 100 V

- Not really what we hoped for
- Oscillatory behaviour with period 5/4 ns
- Remarkable: same form in ENB and SCR

- Put oscillations with observed frequency on top of induced signal, damped solely by trapping
 - Reflections close to detector induce oscillations before actual H(t) ?!
 - Don't ask about underlying physics details...

Fudged Signal Facing Reality

1.00E-01

27

는 180 un

- 100 um

Model 3 tau Model 2 tai

Model 4 tai

- Definitely not 2 or 4 Implies ~20% trapping

correction to v_{sum}

- anyway ✓ Good agreement
- Nominal τ ruled out
- Compare with $\tau = 2, 3$, 4 x nominal
- 8 00F-02 v = 180 um 6 00F-02 T X B 4.00E-02 2.00E-02 -2.00E-02 4.00E-02 10¹⁶ n_{eq}/cm², 100 V

Axis Title

1e16 na

Conclusions

- We irradiated Si with neutrons up to 1.6x10¹⁷ n_{eq}/cm² and provide a "magic" formula for Q(V) above 10¹⁵ n_{eq}/ cm²
- Based on E-TCT, we present a simple model for neutron irradiated silicon detector with 3 distinct regions
- We observe
 - Reduced acceptor introduction in SCR
 - No current generation in ENB
 - Reduced trapping by factor of ~3 at $10^{16} n_{eq}/cm^2$
- All this is highly beneficial for Si operation at HL_LHC
- But...

To-Do List

Produce E(y) plots

Solidify trapping time extraction

- Get rid of oscillations ?
 - Had it much better in 2009...
- Better modeling ?
 - $S(\omega)$ for reflections ?

➢ Get E-TCT up to 10¹⁷ n_{eq}/cm²

- Does the model survive ?
- Field model applies to neutrons only
 - Pion-induced field completely different:
 ~parabolic E
- Conduct PS proton campaign

Backup Slides

- SCR at backplane with positive SC
 - Width ~1/5 of detector, quasi-independent on fluence
 - Moderate increase with V
 - No real annealing effect
- Trapping induced or just hole diffusion out of BP ?
- Not clear whether it contributes to I_{leak} (is $np = n_i^2$?)

Silicon – material of choice

- For LHC, initially very little Si was envisaged for tracking
 - 2/3 layers in barrel only for ATLAS LOI
 - Majority MSGC, some GaAs, diamond
 - Radiation hardness, price
- During project execution Si remained the only tracking sensor
 - Except TRT in outer ATLAS tracking
 - Still ~70 m² of Si
 - CMS all-Si with ~200 m² of active sensors
- These trackers perform extremely well at LHC
- Can performance be extended by an order of magnitude in radiation fluence ?

Figure 3.1: Layout of the Inner Detector with two design concepts; concept A above and B below the beam line (dimensions in cm)

CMS Tracker

Past Experience

- Extensive R&D for >20 years
 - RD-20, -48, -50
- Three effects of radiation
 - ★ Leakage current
 - ★ Space charge
 - Trapping
- All sorts of tricks applied
 - New materials
 - Low temperature
 - Field manipulation
 - Forward bias

- ...

I. Mandić et al. NIM A533 (2004) 442

I0 years ago trapping (and space charge) appeared detrimental for operation beyond ~10¹⁵ n_{eq}/cm²

New Hope

- Collection of electrons on n⁺ read-out strips proved essential for detector operation beyond 10¹⁵ n_{eq}/cm²
 - Junction grows from n⁺ side
 - Electrons move faster
 - Electrons trap less
- ⓒ *CCE* of ≥ 50 % @ $3x10^{15} n_{eq}/cm^2$
- CCE quasi-linear with V, no saturation ?!
- Severely inconsistent with simulations based on measured trapping and acceptor introduction at low fluences
 - Trapping, space charge not linear with fluence ?

G. Casse et al. NIM A581(2007)318

G. Kramberger et al. NIM A579(2007)762

 In 2008 evidence for even higher CCE ≥100 % obtained with n⁺p strips using SCT128A (25 ns)

Measurement of charge collection in p-type microstrip sensors with SCT128 chip

I. Mandić et al., 12th RD50 Workshop , June 2008

Observation of full charge collection efficiency in heavily irradiated n⁺p strip detectors irradiated up to 3×10¹⁵ n_{eq}/cm² I. Mandić, et al., RESMDD08, October 2008

NIMA(2009), doi:10.1016/j.nima.2009.08.004

CCE results clearly incompatible with simulation based on N_{eff} and trapping data from lower fluences !

Summary of simulation results and comparison with measurements.

Φ_{eq} (n/cm ²)	τ_e (ns)	τ_h (ns)	Simulated charge (ke) Measured charge (ke)	Bias (V)	$V_{FD}(V)$
5×10^{14} 1.6×10^{15} 3×10^{15} 1×10^{16} Thin detector	4.17 1.30 0.69 0.21	3.77 1.18 0.63 0.19	17.8 11.1 2.5	?? $V > V_{FD}$ and 24.6 \pm 2.5 $V > V_{FD}$ and 25.6 \pm 2.6 no trapping ? 12.4 \pm 1.2	900 1200 1700 1700	600 1900 3500 11600
1.6×10^{15}	1.30	1.18	7.4	10.9 ± 1.1	700	450

The bias is the voltage at which measured values were taken. V_{FD} is the calculated full-depletion voltage for the pad detector geometry and the space charge concentration calculated from $N_{eff} = g_c \times \Phi_{eq}$, where $g_c = 0.017$ cm⁻¹.

Marko Mikuž: Silicon...

Breakdown condition, can swap α_{a} with α_{b}

 $-\int (\alpha_e(x') - \alpha_h(x')) dx'$

R.VAN OVERSTRAETEN and H.DE MAN, Solid-State Electronics 13(1970),583-608. W.MAES, K.DE MEYER, R.VAN OVERSTRAETEN, Solid-State Electronics 33(1990),705-718.

 $dx \alpha_e(x)e$

A. G. Chynoweth, Phys. Rev. 109, 1537(1958).

Multiplication is textbook physics

- e.g. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981
 - Ch 1.6.4 High-Field Property
 - Velocity saturation, impact ionization
 - Ch 2.5.3 Avalanche Multiplication
 - Junction break-down

• Measured impact ionization

- Electrons create 1 pair in 10 μm at E~20 V/μm (100 μm at 14 V/μm), holes need E~40 V/μm
- Holes need ~1 mm for pair creation at E~20 V/µm
 - Neglect hole multiplication in signal creation altogether
 - Need to invoke hole multiplication for junction breakdown

• $\alpha_e >> \alpha_h$ - Nature gentle to us (in silicon)

- Large range in *E* where electrons multiply without inducing breakdown
- But beware of (too) high electric fields !

37

Multiplication observed

- $E = 20(14) V/\mu m$ needs field peaking
 - Homogeneous E: V≈6000(4000) V for d=300 µm
 - Space charge, electrode shape sharpen up E
 - To get multiplication: $V >> E/\alpha_e = 200(1400) V$
 - Clear advantage of high E in limited region (APD's !)
- Observed in
 - Strip sensors
- Later in
 - Pad detectors
 - 3-D
 - Pixels

G. Casse et al. NIM A 636(2011)56

- No influence of different processing
 At least no systematic one...
- Hint of "depletion" for the thin detector
- 25 ns shaper not optimized for noise
 Noise ~2000 e before irradiation

Have we won ?

• Well, the signal is there... but what about current & noise ?

- If signal gets multiplied (M_s) so does the current
 - In fact even more due to de-trapping $(M_1 > M_s)$

...true, until above 2x10¹⁶ recombination kicks in ! Current starts to saturate

Niagara Falls, Sep 4, 2014

Marko Mikuž: Silicon...

Marko Mikuž: Silicon...

- Sensors contribute through C_{det} to voltage and I_{leak} to current (Shot) noise, added in quadrature
- In fast electronics voltage noise tends to dominate
- When CM present, noise enhanced by excess noise factor F; F(M=1) =1, F(M>>1)≈2
 - R. J. MCINTYRE, IEEE TED13(1966)164 $ENC_{MI} = \sqrt{2e_0I_{gen}\tau \cdot \sqrt{F \cdot M_I}}$ for details
- Impossible to tell apart contributions of CM and recombination
 - CM decrease at highest fluences ?

500 1000 hias voltage [V]

All samples exhibit similar annealing

1500

1000

- As already observed, reverse annealing enhances CM

16000

Gain offset by increased noise

n

Could still be beneficial for small structures e.g pixels

500

bias voltage [V]

8000 80 min 14000 80 min 320 min 7000 320 min 12000 charge [e] 🔺 640 min 6000 🔺 640 min 10000 imes 1280 min ×1280 mir ຍ 5000 × 2560 min 8000 Noise [3000 3000 🗶 2560 mii 5120 mir mean 6000 4000 2000 2000 1000 0 0 1000 1500 500 1000 1500 bias voltage [V] bias voltage [V] Marko Mikuž: Silicon...

n

1500

1000

bias voltage [V]

1500

Thin detectors

- Seen to provide more signal after heavy irradiation at "low" V
 - Less charge sharing for inclined tracks
- But beware:
 - Less ionization signal, more fluctuations
 - Bichsel, Rev.Mod.Phys.60(1988)663; PDG
 - Additional fluctuations from trapping, CM
 - Rely on Central Limit Theorem ?
 - Best measure MPV-> S/N-> spectrum on actual device in test beam
- Efficiency vs. noise occupancy as function of threshold - ultimate info for (binary) tracking

 $FWHM \ge 4\xi = 2K \cdot (Z/A) \cdot (x/\beta^2) \text{ MeV}$

Marko Mikuž: Silicon...

