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Finding the needle. . .

How good are you in finding the interesting event?

(No worries. Explanation will follow later)
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Finding the needle. . .

This simplified illustration has some important messages:

I All recent physics results had to deal with pile-up – and
succeeded. Pixel detectors were the crucial ingeredient. This is
an example where the capabilities for finding primary
vertices is key.

I Some analyses are interested in displaced vertices or
secondary vertices, like the one in my sketches or in
b-tagging. The domain of pixels. Will show examples.

I Some property measurements are interested in both, the
primary and the secondary vertex plus separation from pile-up.
Will show an example of a lifetime analysis.
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Finding the needle. . .

This simplified illustration has some important messages:

I All recent physics results had to deal with pile-up – and
succeeded. Pixel detectors were the crucial ingeredient. This is
an example where the capabilities for finding primary
vertices is key.

I Some analyses are interested in displaced vertices or
secondary vertices, like the one in my sketches or in
b-tagging. The domain of pixels. Will show examples.

I Some property measurements are interested in both, the
primary and the secondary vertex plus separation from pile-up.
Will show an example of a lifetime analysis.

But now: getting to the real stuff.
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Introduction

CMS. One of the two
general purpose detector
experiments at Cern’s
Large Hadron Collider

Onion structure, pixel
inside.
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Introduction

Pixel detector (barrel
shown) consists of 3
barrel layers and 2× 2
disks on each end

Barrel and endcap share
common technology:
same ROC, unit cell size
100 × 150µm2
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Analysis performance: Bs → µµ
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PRL 111, 101804 (2013)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH13004
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Analysis performance: Bs → µµ
I Is a search for a rare decay, measured to be

BF(B0
s → µ+µ−) = (3.0 +1.0

−0.9)× 10−9

BF(B0 → µ+µ−) < 1.1× 10−9

I Plot shows the weighted combination of all categories
(barrel/endcap, BDT result bins)

I The signal consists of just two muons from a common
secondary vertex, separated from the primary vertex

Sig:
B

µ
_ µ

B

Bgr:

B

µ

B

_

µ

I Precise 3d vertexing is crucial to make sure two random
background muons do not merge.

I Two muons in 2d create a vertex, background separation
difficult to impossible. Less resolution in z direction makes
this analysis harder.
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Analysis performance: Bs → µµ

Excerpt from the paper

Lists the variables used
for the BDT. 3d
vertexing plays an
important role.

NB: All these variables
have been demonstrated
to be independent of
pile-up (!)
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Analysis performance: H → ZZ → 4`
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002PubTWiki
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Analysis performance: H → ZZ → 4`

I This is the other way round: four muons need to be from
primary vertex (“anti-secondary vertex detector”)

I Excerpt from paper:

I Plot shows combination of channels 4e, 4µ, and 2e2µ
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Analysis performance: VZ → bb̄
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Eur. Phys. J. C (2014) 74:2973

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13011
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Analysis performance: VZ → bb̄

I Important for H → bb̄

I Works on b-tagged jets

I Doesn’t work without a pixel detector
I But future looks hazy: trend towards higher pT is a challenge:

I Cluster merging happens inside jets. New algorithms help but
if detectors would be capable to keep tracks from merging. . .

I Fraction of b-hadrons penetrating first layer of pixels increases.
Challenge for reconstruction algorithms to separate from
nuclear interactions.
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Analysis performance: Λb lifetime
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11013
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Analysis performance: Λb lifetime

427 µm
7.89 cm
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Analysis performance: Λb lifetime
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Analysis performance

I Decay channel Λ0
b → J/ψ(µµ)Λ0(pπ)

I Uses three vertices:
I Primary vertex where Λ0

b starts its life
I J/ψ → µµ as decay vertex of Λ0

b
I Λ0 decay for event selection

I Less prominent physics but show-cases the capabilities of the
detector

I Lifetime of 1.503 ± 0.052(stat.) ± 0.031(syst.) ps translates
to about 400µm flight distance (unboosted)
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Detector performance

Allow me to wrap-up so far:

I There are much more analyses

I I think it is fair to say: most analyses rely on the pixels, be it
for the measurement itself or just to mitigate pile-up

I This would not be possible without excellent performance due
to good design and reliable operation

I More on operation experience in talk by János Karancsi

I More on radiation effect in talk by Viktor Veszprémi

I NB: The selection of analyses is mine, so be aware of biases.

But let’s have a look at some performance plots
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Detector performance:

Nice resolution in both directions. Solid symbols: 68%, open
symbols: 90% intervals.
arXiv:1405.6569

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTRK
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Detector performance:
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Detector performance

Our performance would be
impossible without the
incredible effort to calibrate
the detector.

Alignment stands just as an
example of this.
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Conclusions

I The current CMS pixel detector works very well.

I Analyses shown here are a good example of this.

I Most analyses rely on pixels.

I Performance is at a very high level.

I Not possible without good design, operation, calibration,
algorithms, and a lot of dedicated people.
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Thank you for your attention!

Thanks go to

CMS, LHC

Pixel team

Analysis teams

Friends at PSI, UNL,

USCMS
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