

VeloPix: The Pixel ASIC for the LHCb VELO Upgrade

Tuomas Poikela (CERN/TUCS) On behalf of the VeloPix design team 3.9.2014 PIXEL 2014, Niagara Falls, Canada

Introduction
VeloPix vs Timepix3
Readout architecture
GWT serializer
Summary

Introduction

VeloPix: Hybrid pixel detector (HPD) Readout ASIC for the LHCb VELO upgrade

➤ The ASIC reads out all bunch crossings at 40 MHz

The VELO upgrade:
Approx. 2.85 Tbit/s
≥ 26 module pairs
≥ 624 ASICs
≥ 41 Mpixels*

See talk by Eddy Jans: "The VELO Pixel Upgrade"

*Nokia Lumia 1020 (2013) also has 41 MP camera

Module of 12 VeloPix ASICs [1]:

See Oscar Augusto's talk about the module cooling: "Evaporative CO2 Microchannel Cooling for the LHCb VELO Pixel Upgrade."

Track rates for module [2]:

Highly non-uniform radiation dose: 8 x 10^{15} to 2 x 10^{14} n_{eq} /cm²

Peak rates:

Hottest chip 15.1 Gbits/s hottest module: 61.2 Gbits/s

VeloPix project timeline

VeloPix ASIC specifications

Feature	VeloPix	Timepix3 [2]	
Readout type	Continuous, trigger- less, binary	Continuous, trigger- less, ToT	
Timing resolution/range	25 ns, 9 bits	1.5625 ns, 18 bits	
Power consumption	$\leq 1.5 \mathrm{W cm^{-2}}$	$\leq 1.0 \mathrm{W} \mathrm{cm}^{-2}$	
Pixel matrix, pixel size	256 x 256, 55 um x 55 um	256 x 256, 55 um x 55 um	
Radiation hardness	400 Mrad, SEU tolerant	-	
Peak hit rate	900 Mhits/s/ASIC 50 khits/s/pixel	80 Mhits/s/ASIC 1.2 khits/s/pixel	> _X 1
Sensor type	Planar silicon, e- collection	Various, e- and h+ collection	
Max. data rate	20.48 Gbps	5.12 Gbps	x 4
Technology	130 nm CMOS	130 nm CMOS	

Timepix3 first testbeam

3.9.2014

VELOPIX ARCHITECTURE

Packet format

30% data reduction from sharing the **BX ID** and super pixel address among multiple pixels.

BX ID = bunch crossing ID/ time stamp/time-of-arrival

3.9.2014

Analog front-end amplifier response

CÉRN

LHCD

Analog front-end pile-up

Double column architecture

CERN

Simulation: Latency & BX ID length

<u>Trigger-less architecture:</u> Latency must be < BX ID range. Otherwise ambiguities in BX identification.

*No analog pile-up included.

Double column floorplan

For the hottest column, rate 5 MHz, power 3.3mW (2.25mW active + 1.05 mW standby) $\Rightarrow P(\text{column}_X) = \text{rate}_X/5.0\text{MHz} * 2.25\text{mW} + P(\text{standby}_X)$

Router/Output logic

CERN

GWT : a 60-mW 5.12 Gbps serializer/transmitter

See a coming talk by Vladimir Gromov: "Development of a lower power 5.12 Gbps Data Serializer and Wireline Transmitter circuit for VeloPix chip" in TWEPP 2014

Velo_GWT test chip in 130nm CMOS technology

I mm x 2 mm test chip in 130 nm CMOS technology
Power : 5.12 Gbps serializer: 15 mW, wireline driver: 45 mW
Eye diagram: +/- 200 mV is 60 ps (pseudo-random pattern)

3.9.2014

PIXEL 2014 VeloPix ASIC

Summary: Power

Block	P (mw)	#Blocks	Total power
Analog front-end	0.014	65536	917.5
Digital front-end	0.002	65536	131.1
SP column (avg)	3.6	128	460.8
Slow control	50	1	50*
EoC block	2	128	256*
Periphery clock tree	100	1	100*
EoC fabric	300	1	300*
PLL	5.5	1	5.5*
GWT	60	4	240
		Total (mW):	2460.9
		W/cm^2	1.09

*estimated/budgeted

Summary

- Novel trigger-less HPD readout ASIC architecture was presented
 - Trigger-less, continuous
 - Reads out > 900 Mhits/s/ASIC, consuming < 1.5 W/cm²
- VeloPix builds on expertise learned during the Timepix3 design
- ➤ GWT serializer (5.12Gbps/60mW) already demonstrated working in silicon
- Submission plans: Mid-2015, installation 2018 -2019

Questions now?

Or later? Email tuomas.poikela@cern.ch.

<u>Please also see related PIXEL2014 VELO upgrade talks:</u>
1. E. Jans. "The VELO Pixel Upgrade", Thursday 10:50.
2. O. Augusto. Evaporative CO2 Microchannel
Cooling for the LHCb VELO Pixel Upgrade. Thursday 14:00.

References:

[1] LHCb VELO Upgrade TDR. CERN LHCC 2013-021. 2013.

[2] L. Eklund, "The LHCb VELO Upgrade", ICHEP 2014

[3] T. Poikela. "Design and Verification of Digital Architecture of 65K Pixel Readout Chip for High-Energy Physics.", 2010.

[4] T. Poikela et al. "Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout", 2014

[5] T. Poikela et al. "Digital column readout architectures for hybrid pixel detector readout chips", 2014.

3.9.2014

Front-end simulation

3.9.2014

PIXEL 2014 VeloPix ASIC

Table: Data rates for different super pixel dimensions:

Binary encoded packets (no ToT)				
Super Pixel Geometry	Data rate (Gbps)	Packet size (#bits)	Reduction (%)	
256 x 256	14.785	28 + N x 16	38.179	
4 x 4	16.477	28 + N x 4	31.105	
2 x 4	16.806	28 + N x 3	29.729	
2 x 4	16.945	33	29.148	Chosen format
1 x 4	17.758	30	25.748	
2 x 2	17.857	30	25.335	
1 x 4	18.283	28 + N x 2	23.553	
2 x 2	18.373	28 + N x 2	23.177	
4 x 4	18.661	40	21.973	
1 x 2	19.703	29	17.616	
1 x 2	19.878	28 + N x 1	16.884	N
1, single pixel	23.916	28	0.000	No super pixel
		_		grouping

N = number of pixel hits in a packet

3.9.2014

Super pixel power estimation

Power for SP hitmap buffers:

- ➤ Target rate approx. 300 kHz
- ➢ Power approx. 20 uW
- Hand-crafted clock gating (CG) works!

Power for transporting the packets:

- ➤ Target rate 5 MHz
- ➢ Power 66 uW

128 x 64 = 8192 Super pixels per chip!!