The CLIC vertex detector

Pixel 2014
Niagara Falls, Canada
September 1st, 2014

Dominik Dannheim (CERN-LCD)
on behalf of the
CLIC detector and physics (CLICdp) collaboration

Outline

- Linear Collider concepts and physics goals
- Physics performance and vertex-detector requirements
- Detector optimization studies
- R&D on sensors and readout
- Powering, cooling and detector integration
- Summary / Conclusions

ILC and **CLIC**

- linear e⁺e⁻ colliders
- luminosities: few 10³⁴ cm⁻²s⁻¹
- length: up to ~48 km

ILC

- superconducting RF cavities (like XFEL)
- •gradient 32 MV/m
- • \sqrt{s} ≤ 500 GeV (1 TeV upgrade option)
- •focus on ≤ 500 GeV, physics studies for 1 TeV

Focus of this talk is on the 3 TeV CLIC case

CLIC

- •2-beam acceleration scheme operated at room temperature
- •gradient 100 MV/m
- •√s up to 3 TeV
- •physics + detector studies for 350 GeV 3 TeV

ILC and CLIC machine environment

	ILC at 500 GeV	CLIC at 3 TeV
L (cm ⁻² s ⁻¹)	2x10 ³⁴	6×10 ³⁴
BX separation	554 ns	0.5 ns
#BX / train	1312	312
Train duration	727 μs	156 ns
Train repetition rate	5 Hz	50 Hz
Duty cycle	0.36%	0.00078%
σ_{x} / σ_{y} (nm)	474 / 6	≈ 45 / 1
σ_{z} (μ m)	300	44

drives timing requirements for detectors

very small beam sizes

→ high rates of e⁺e⁻ and hadronic backgrounds

ILC ESD-2012/2 / CLIC CDR

200 ms / 20 ms

LC physics program

- Precision measurements of SM processes (Higgs, top, electroweak)
- •Precision measurements of new physics potentially discovered at 14 TeV LHC
- •Search for new physics: unique sensitivity to particles with electroweak charge

- •Flavor tagging essential:
 - •Separation of b, c and light jets, e.g. measurement of H→bb,cc,gg
 - •Accurate reconstruction of top quarks in the decay t→Wb, e.g. for ttH
- →need high-precision vertex detectors

Measurement of top Yukawa coupling

ctc

- Linear Collider allows for direct measurement of top Yukawa coupling through e⁺e⁻ → ttH
- Full-simulation study for CLIC:
 - $\sqrt{s}=1.4$ TeV, $L_{int}=1.5$ ab⁻¹, unpolarised beams
 - γγ→hadrons pileup overlaid
 - consider H→bb, t→Wb
 → complex 6/8-jet final states
 - jet clustering, missing energy reconstruction, flavor tagging (4 b-jets), lepton reconstruction (incl. tau) are crucial

• $\Delta(\sigma(ttH))$:

Third-highest b-tag value

multi-variate event selection

- 12.0% (semi-lept.), 10.9% (hadr.),
- 8.1% combined
- $\rightarrow \Delta(g_{ttH}) \sim 4.3\%$ (comb.)
- systematic uncert.negligible
- •At LHC14, 3 ab⁻¹: $\Delta(g_{HH})\sim 7-10\%$

The CLIC vertex detector

CLICdp Note-2014-001

Flavor tagging: impact on physics performance

- e⁺e⁻ → Hvv: dominating Higgs production process at √s=3 TeV
- σ × BR measurement for the decays to bb and cc
- flavor tagging crucial for achievable precision

channel		change for +/-20% fake r.
H → bb	0.23%	0.24% / 0.21%
H → сс	3.1%	3.6% / 2.6%

• consider ±20% change in fake rates

sizeable effect, in particular for H→cc:
 30% more integ. luminosity required for same precision when increasing fake rate by 20% (>1 year of additional running!)

LCD-Note-2011-036, CLICdp Note-2014-002

LC vertex-detector requirements

 efficient tagging of heavy quarks through precise determination of displaced vertices:

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot \text{GeV}^2/(p^2 \sin^3 \theta)}$$

$$a \sim 5 \, \mu m, \ b \sim 10 - 15 \, \mu m$$

- \rightarrow good single point resolution: $\sigma_{SP}\sim3$ µm
 - → small pixels <~25x25 μm², analog readout

- → low-power ASICs (~50 mW/cm²) + gas-flow cooling
- 20-200 ms gaps between bunch trains → trigger-less readout, pulsed powering
- $B = 4-5 T \rightarrow Lorentz$ angle becomes important
- few % maximum occupancy from beam-induced backgrounds → sets inner radius
- moderate radiation exposure (~10⁴ below LHC!):
 - NIEL: $< 10^{11} \text{ n}_{eq}/\text{cm}^2/\text{y}$
 - TID: < 1 kGy / year
 - for CLIC: Time stamping with ~10 ns accuracy, to reject background
 → high-resistivity / depleted sensors, readout with precise time stamping

CLIC vertex-detector concept

ctc

- systematic optimization of geometries:
 - background occupancies
 - detector performance
- large coverage: θ>7° (lηl<2.8)
- 3 double layers or 5 single layers
- ~1 m² area, ~2G pixels
- R_i ~ 30 mm background-occupancies
- beam pipes with conical sections

Flavor-tagging performance

cuc

CLIC_SiD spiral end cap

- Use b- and c-tagging performance as benchmark for detector designs
- Challenging full-simulation study (multivariate analysis)
- Implementations following engineering studies:
 - Geometry with 2x more material in vertex layers
 - → 5% 35% degradation in performance
 - Spiral end-cap geometry (air-flow cooling)
 - → few problematic regions with reduced coverage, otherwise similar performance as for disk geometry
 - 3 double layers vs. 5 single layers
 - → small improvement for lower-energy jets (less material per layer)

The CLIC vertex detector

Vertex-detector technology R&D

Readout ASICs

Interconnects

Light-weight supports

Sensors

Powering

- Integrated R&D effort, simultaneously addressing CLIC vertex-detector challenges
- Examples for recent developments on the following slides

Medipix/Timepix hybrid r/o chip family

Chip	Year	CMOS Process	Pitch [µm²]	Pixel operation modes	r/o mode	Main applications
Timepix	2006	250 nm	55x55	∫ToT or ToA or γ counting	Sequential (full frame)	HEP (TPC)
Medipix3RX	2012	130 nm	55x55	γ counting	Sequential (full frame)	Medical
CLICpix demonstrator	2013	65 nm	25x25	ToT + ToA	Sequential (data comp.)	Test chip with 64x64 pixel matrix
Timepix3	2013	130 nm	55x55	ToT + ToA, γ counting + ∫TOT	Data driven	HEP, Medical
Velopix	2015	130 nm	55x55	ToT + ToA, γ counting + ∫TOT	Data driven	LHCb (10x Timepix3 rate)
Smallpix/ Timepix4	2016	65 nm (t.b.c.)	~35x35	ToT + ToA, γ counting + ∫TOT	Data driven	HEP, Medical
CLICpix	tbd	65 nm	25x25	ToT + ToA	Sequential (data comp.)	CLIC vertex detector

ToT: Time-over-Threshold

→ Energy

ToA: Time-of-Arrival

→ Time

- Taking advantage of smaller feature sizes:
 - Increased functionality and/or
 - · Reduced pixel size
 - Improved noise performance

Thin-sensors with Timepix r/o

Micron + IZM and VTT/Advacam
Timepix planar sensor assemblies (55 μm pitch)

- Test feasibility of ultra-thin sensors
- 50-300 μm sensor,100-750 μm ASIC thickness
- thinnest assembly: 100 μm sensor on 100 μm ASIC
- ultimate goal: 50 μm sensors on 50 μm ASICs
- Test-beam campaign at DESY II in 2013/14
 → talk by M. Benoit on Tuesday
- sensors with 25 μm² pitch for CLICpix: Sep.2014 bump-bonding trials at SLAC (C. Kenney)

DESY II test-beam setup

Timepix3

Timepix3 high-rate hybrid pixel readout ASIC:

- 256x256 pixels, 55 um pitch
- implemented in 130 nm CMOS technology
- simultaneous ToT (10 bit) and ToA (18 bit), event counting, integr. ToT
- fast time stamping (1.6 ns precision)
- data-driven readout up to 40 Mhits/cm²/s
- power-pulsing functionality
- assemblies with Advacam 300 µm sensors produced
- test-beam campaign in CERN-PS (August 2014) with AIDA/EUDET telescope
- → first results in talk by M. Benoit on Tuesday

SPIDR r/o system for Timepix3 (CERN/NIKHEF)

S. Kulis

Evaluation Board

Hybrid r/o technology: CLICpix

- 65 nm CMOS hybrid r/o chip, targeted to CLIC vertex detectors
- based on Timepix/Medipix chip family, synergy with HL-LHC pixel r/o projects (RD53 collaboration on 65 nm r/o)
- demonstrator chip with 64 x 64 matrix
- 25 µm pixel pitch
- simultaneous 4-bit time (TOA) and energy (TOT) measurement per pixel
- → front-end time slicing < 10 ns
- selectable compression logic: pixel, cluster + column-based
- → full chip r/o in < 800 µs (at 10% occup., 320 MHz r/o clock)
- power pulsing scheme
- \rightarrow P_{avq}< 50 mW/cm²
- r/o tests on prototypes:
 - chip fully functional
 - agreement with simulations

CLICpix: summary

Parameter	Unit	Simulation	Measurement
Rise time	[ns]	50	-
TOA accuracy	[ns]	<10	<10
Gain	[mV/ke ⁻]	44	40 *
Dynamic range	[ke ⁻]	44 (configurable)	40 * (configur.)
Integr. nonlinearity (TOT)	[LSB]	<0.5	<0.5
ENC (w/o sensor)	[e ⁻]	~60	~55 *
DC spread σ (uncalibrated)	[e ⁻]	160	128 *
DC spread σ (calibrated)	[e ⁻]	24	22 *
Power consumption	[µW/pixel]	6.5	7

^{*} results obtained with electrical test pulses

S. Kulis, P. Valerio

- good agreement between simulations and measurements
- power pulsing works according to specifications (~100x reduction of average power)
- programmable power on/off times, front-end wake up within ~15 μs
- Radiation test: chip functional up to ~250 MRad

HV-CMOS active sensor with capacitive coupling

CCPDv3

3 mm

625X62

Capacitive Coupled Pixel Detector (CCPD)

- Prototype for ATLAS (FEI4) and CLIC: CCPDv3
- AMS H18 180 nm HV-CMOS process
- Vbias~30-100 V → depletion layer ~10-20 μm
- 2-stage amplifier, capacitive coupling to readout ASIC
- CLICpix 64x64 matrix (25 μm pitch)
- first tests with ⁵⁵Fe source: chip functional, good S/N
- more in talk by I. Peric on Tuesday

CCPDv3-CLICpix assemblies

- Capacitive coupling CCPDv3 - CLICpix through few µm of glue
- complex double-sided wire bonding
- successful test-beam integration in CERN PS with AIDA telescope

The CLIC vertex detector

Through-Silicon Vias (TSV)

WD7

Edge

62.0µm

Through Silicon Via (TSV): vertical electrical connection

- → eliminates need for wirebonds
- → 4-side buttable chips
- → increased reliability, reduced material budget

TSV project (ALICE, CLIC, ACEOLE, AIDA) with CEA-Leti

- 130 nm Medipix(RX) wafers, via-last process
- · first phase: demonstrated feasibility
- on-going second phase: demonstrate good yield
- launched third phase: TSV with Timepix3 50 µm thickness

CEA-Leti via-last process flow

- 60 μm TSV diameter
- wafers thinned to 120 μm
- 5 μm copper layer for TSV :

Medipix3 redistribution layer

Temporary bonding, thinning to 120 μm

Cut through TSV

123.1µm

via etching + isolation

http://iopscience.iop.org/1748-0221/6/11/C11018/pdf/1748-0221_6_11_C11018.pdf

CLICpix power-pulsing + delivery concept

Small duty cycle of CLIC machine

→ turn off front end in gaps between bunch trains, to reduce avg. power

- Power pulsing with local energy storage in Si capacitors and voltage regulation with Low-Dropout Regulators (LDO)
- FPGA-controlled current source provides small continuous current
- Low-mass Al-Kapton cables

Vertex-detector power consumption

C. Fuentes

CLICpix power-pulsing + delivery results

- Measurements on prototypes for digital and analog powering of ladders:
 - I_{ladder}<300 mA; P<45 mW/cm²
 - Voltage stability:
 ΔV~16 mV (analog), ~70 mV (digital)
 - ~0.1% X₀ material contribution, dominated by Si capacitors
 - Can be reduced to ~0.04% X₀ with evolving Si capacitor technology: 25 μF/cm² → 100 μF/cm²

Cooling: simulations

Cooling studies for CLIC vertex detector

- ~500 W power dissipation in CLIC vertex area
- spiral disks allow air flow through detector
- ANSYS Computational Fluid Dynamic (CFD) finite element simulation
- → air cooling seems feasible
- 5-10 m/s flow velocity, 20 g/s mass flow

September 1, 2014

The CLIC vertex detector

Cooling: experimental verification

- built mock-up to verify simulations (temperature, vibrations)
- measurements on single stave equipped with resistive heat loads:
 - air flow
 - temperature
 - vibrations (laser sensor)
- comparison with simulation

Dissipated Power [W]

F. Nuiry, C. Bault, F. Duarte Ramos, M.-A. Villarejo Bermudez, W. Klempt

The CLIC vertex detector

Low-mass supports

clc

- Aim for only ~0.1% X0 per layer for powering + supports
- \rightarrow ~0.05% X0 for supports
- Evaluating various designs and materials based on:
 - Carbon-Fiber-Reinforced Polymers (CFRP)
 - Silicon-Carbide (SiC) foams
- Bending stiffness validated with calculations, finite-element simulations and measurements

SiC foam assembly

ANSYS FE simulation for CFRP

The CLIC vertex detector

Vibration-amplitude measurement for Rohacell stave

F. Nuiry, C. Bault, Air Velocity [m/s]
F. Duarte Ramos, W. Klempt 24

Mechanical integration

ccc

- Detector integration: low-mass supports, services, assembly
- Taking into account constraints from powering and cooling
- Detailed material-budget calculations, comparison with simulation models

Summary and Conclusions

- High-energy linear lepton colliders provide:
 - unique potential for discovery and precision physics at the TeV scale
 - challenging requirements for vertex detectors
- Examples from an integrated R&D program on the CLIC vertex detector:
 - Detector layout optimization with flavor tagging
 - Hybrid pixel-detector technology with planar and active HV-CMOS sensors
 - Power delivery and power pulsing
 - Detector cooling and mechanical integration
- Synergy with other vertex-detector R&D projects
- More on sensors and simulation on Tuesday at 15h30:
 M. Benoit, Calibration, Simulation and test-beam characterization for hybrid-pixel readout assemblies with ultra-thin sensors

Thanks to everyone who provided material for this talk!

Additional material

CLIC detector & physics collaboration

CLICdp member institutes:

- · Dept. of Physics, Aarhus University
- Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy
- · Vinca Institute for Nuclear Sciences, Belgrade
- · University of Bergen
- The School of Physics and Astronomy, University of Birmingham
- University of Bristol
- Institute of Space Science, Bucharest
- Dept. of Physics, University of Cambridge
- Dept. of Physics and Technology, AGH University of Science and Technology, Cracow
- Polish Academy of Sciences, Cracow
- CERN, Geneva
- · University of Glasgow
- · Argonne National Laboratory, Lemont
- · Department of Physics, University of Liverpool
- Australian Collaboration for Accelerator Science (ACAS), Melbourne
- · University of Michigan, Ann Arbor
- NC PHEP, Belarusian State University, Minsk
- MPI Munich
- Dept. of Physics, Oxford University
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague
- Pontificia Universidad Católica de Chile, Santiago de Chile
- · Spanish Network for Future Linear Colliders
- Dept. of Physics, Tel Aviv University

- CERN acts as host laboratory
- •Currently 23 institutes from 16 countries
- •The CLIC accelerator R&D is being conducted in collaboration with ~48 institutes

Hadron vs. lepton colliders

p-p collisions	e+e- collisions
Proton is compound object → Initial state not known event-by-event → Limits achievable precision	e ⁺ /e ⁻ are point-like → Initial state well defined (√s / polarization) → High-precision measurements
Circular colliders feasible	Linear Colliders (avoid synchrotron rad.)
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	Cleaner experimental environment → trigger-less readout → Low radiation levels
√s constrained by design	√s can be tuned → Threshold scans
High cross-sections for colored-states	Superior sensitivity for electro-weak states

CLIC detector concept

- •low-mass **vertex detector** with ~25x25 μm² pixels
- silicon tracker
- •fine-grained **PFA calorimetry**, 1+7.5 Λ_i
- •4-5 T solenoid
- •return yoke with muon ID
- complex forward region with final beam focussing

Beam-induced backgrounds

e e Pairs

Beamstrahlung

small beam profiles at IP

→very high E-fields

Beamstrahlung

leads to:

• e+e- pairs

- hadronic events
- → Reduces E_{cm}
- → Background particles

Main backgrounds in detector:

- •Incoherent e⁺e⁻ pairs: 60 particles / BX detector design issue (occupancies)
- •γγ→hadrons: 54 particles / BX impacts physics
- → Need pile-up rejection

Backgrounds in inner tracking region

CLIC_ILD incoherent pairs + $\gamma\gamma \rightarrow$ hadrons: silicon hits, no safety factors

- Train occupancies up to 3% in vertex region (including clustering and safety factors)
- moderate radiation exposure,
 ~10⁴ below LHC

Region	Readout granularity	Max. occup.	NIEL [n _{eq} /cm²/y]	TID [Rad/y]
VXB	20 μm x 20 μm	1.9 %	4x10 ¹⁰	20k
VXEC	20 μm x 20 μm	2.8 %	5x10 ¹⁰	18k
FTD pixels	20 μm x 20 μm	0.6%	2.5x10 ¹⁰	5k
FTD strips	10 cm x 50 μm	290 %	1x10 ¹⁰	700
SIT	9 cm x 50 μm	170 %	2x10 ⁹	200

CLICpix pixel architecture

- The analog front-end shapes photocurrent pulses and compares them to a fixed (configurable) threshold
- Selectable polarity (positive / negative signals)
- Digital circuits simultaneously measure Time-over-Threshold and Time-of-Arrival of events and allow for zero-compressed readout

CLICpix analog frontend

CLICpix: time and energy measurement

CLICpix: baseline equalization

Calibrated spread across the whole matrix is 0.89 mV RMS (~22 e⁻) For comparison: MIP signal in 50 µm silicon ~3700 e⁻

S. Kulis, P. Valerio

CLICpix: uniformity of gain and noise

- Uniform gain across the matrix
- Gain variation ~4.2% r.m.s.
 (for nominal feedback current)

- Uniform ENC across the matrix
- Mean ENC: 55 e⁻, SD: 5.7 e⁻ (without sensor)

CLICpix: radiation qualification

- Moderate radiation-tolerance requirements at CLIC: <100 kRad TID
- However: building blocks can be re-used for RD53 (~1 GRad required)
- Results of radiation testing useful for gaining deeper understanding of the chip
- → performed radiation test up to 1 GRad (up to 150 kRad/minute) in calibrated X-ray setup

- No significant changes observed in sub-MRad range relevant for CLIC
- For >250 MRad: PMOS switches in current mirror fail
- → Break-down of analog power (note: band gap foreseen for final chip, instead of current mirror)
- digital components kept working normally

CLICpix: energy measurement

- Measure charge released in each pixel
 → Improve position resolution through interpolation
- Time-Over-Threshold (TOT) measurement (4-bit precision)
- Calibration measurement using external test pulser:

CLICpix power-pulsing + delivery requirements

Small duty cycle of CLIC machine allows for power reduction of readout electronics: turn off front end in gaps between bunch trains

Challenging requirements:

- Power budget <50 mW/cm² average (air-flow cooling limit)
- High peak current > 40A/ladder
- Different timing analog/digital electronics
- High magnetic field 4-5 T
- Material budget < 0.1% X₀ for services+supports
- Regulation < 5% (60 mV) for analog part

Vertex-detector power consumption

CLICpix powering states

C. Fuentes, X. Llopart, P. Valerio

The CLIC vertex detector

40

CLICpix v2

First ideas for new version of CLICpix:

- larger pixel matrix (256x256)
- analog front-end re-design: sharing between adjacent pixels, to save space
 - → allows for increased counter depth:
 - 5 bit TOA (instead of 4)
 - 7 bit TOT (instead of 4)
- share TOA between adjacent pixels (to be discussed)
 - → would make space for 10 bit TOT
- on-board LDO
- PLL, band-gap blocks (RD53)
- features for daisy-chain
- bug fixes
- Launched sensor production for 256 x 256 CLICpix (in anticipation of new chip version)

CLICpix sensor 64x64

CLICpix sensor 256x256

P. Valerio, M. Benoit, et al.

CCPDV3: first tests

ctc

- Measured signal at test output for 1st and 2nd amplification stage
- X-rays froms ⁵⁵Fe source
- V_{bias}=30 V
- no baseline adjustment performed
- chip is functional, signal as expected
- Assemblies with CCPDV3 glued to CLICpix and corresponding test board are in production

