

DAQ baseline structure

Collision rate	40 MHz
Level-1 Maximum trigger rate	100 kHz
Average event size ≈	1 Mbyte
Event Flow Control ≈	10^6 Mssa/s

No. of In-Out units **Readout network bandwidth Event filter computing power** Data production No. of PC motherboards 512

- ≈ 1 Terabit/s
- ≈ 10⁶ SI95
- ≈ Tbyte/day
- ≈ Thousands

DAQ 2005-07 activities

1. Production

Readout systems: Slink (720), FRL(560), FMM(50) modules, cables (800) and crates(60)

2. Procurement & Installation

Pre-series scale 1:10 DAQ system for development and integration
USC DAQ control PCs(80): FRL, FMM, FED, FEC, DCS, VME-PCs (180),
D2S Data to Surface Myrinet links(1024), FED Builder switches(12), Fibers(2048)
SCX Readout Builders: Racks(120), DAQ PCs (600 RU-BU), EVB (2000 ports), HTL (800 PCs)

3. Commissioning

USC DAQ racks, FRL/FMM crates, PCs

D2S Data to Surface Myrinet links, FED Builder switches, Fibers

SCX Readout Builders: Racks, DAQ farms (RU-BU), EVB switch, Filter Farm

4. MTCC integration

Pre-series DAQ for final detector readout : Slink, FRL, FMM modules, cables and crates

5. TriDAS integration

Detector readout systems: Slink, FRL, FMM modules, cables and crates

6. Development&Consolidation

Frameworks: XDAQ, RCMS, FF-HTL. Interfaces: XDAQ-DB, PVSS Applications: RB(EVM/RU/BU), FMs, Configurator, DAQ Monitor, Flow controllers, DQM, DBs Online software releases: MTCC May 2006, First Run Jan 2007

Integration: Pre-series

Current activities

- DAQ integration and MTCC
- Online services pre-series
- Detector readout integration
- First Run EVB technologies GbE with a FORCE10 E1200 switch

Readout Builder PCs

- 64 dual Xeon 2.6 GHz RU-BU PCs
- Myrinet +GbE interfaces
- 16 dual Xeon 2.6 GHz Filter nodes
- OS Linux 2.4

Scale:	
Structure	1:8
Functionality	1:1
Performances	1:4

CMS/SC TriDAS Reviw AR/CR05

Pre-series: Hw&Sw integration

Detector readout integration

Integration schedule

very late

Detector / SLINK-Host Date		location	test chain	remark/status
CSC	3rd October 2005	Cessy	Detector-FU	completed
Tracker (p 1)	18th November 2005	Cessy	FED-FU	completed
DTTF	20th October 2005	bat 40	pdFED-FBO(RUI)	ongoing
ECAL	21st October 2005	Cessy	pdFED-FBO(RUI)	ongoing
RPC	5th December 2005	Cessy	pdFED-FU	ongoing
HCAL	December 2005	Cessy		ongoing
LTC	January 2006	Cessy	LTC-BU	ongoing
DT	February 2006	b40-3	ROS-FED-FRL	ongoing
Tracker (p 2)	5th December 2005	Cessy		scheduled
Pixel	16th March 2006	Cessy	FED-BU	scheduled
GTP	?			
CSC Trackfinder		?		
GCT	?			

Preshower

Pre-series system integrations

• MTCC DAQ system:

- 6 TTC partitions, single DAQ partition
- Single RU Builder and FED builder (as in final CMS)
- 7x8 RU Builders and 7 times FB N x1
- Filter Farm 16 FUs available
- 10 Central/Local DCS servers

MTCC Data bases

– Data base server (oracle 10G)

MTCC Event data storage

- Server 900 Gbyte (to be doubled) (network write around 50 MB/s)

• First run EVB and PC technologies evaluation (Jul 2006)

- Force 10 GBE switch (RU to multiple BU EVB etc..)
- Multi Core 64 bit next generation PCs, Multi-GBE network interfaces

Service Network

- Same structure as for CMS (final specification ready for installation):
- CERN GPN and private network for all DAQ
- Head nodes (aka application servers, aka proxy nodes) in between
- Connection Cessy CERN backbone is 1 Gbps

System admin

- Linux SLC3
- Few windows-XP nodes (for DCS)
- Services: NFS server, DHCP, LDAP, ...
- Nodes on private network must be centrally administered

SCX surface computing room

DAQ configuration for first run

Subsystem	Nom	ninal Ready	FED&Global Trigger Processor
2005 Pre-series	Development and Magnet Test 32x32x2 EVB, 16FU FF	100%	
2006 D2S	Procurement and production FRL/FMM, PC control, FED Builders, Fib	100% ers	
Readout Builders			
2006-07	Infrastructure	>50 %	FED&Global Trigger Processor
	Racks, Control, Networks, Remote		
2007 Readout	4x (64x64) EVB full installation	50% (50 kHz	
	500 Gb/s switch, Local Storage June 2006 600 DAQ-PCs and EVB switch		
2008-9 Filter Farm	incremental	10-30% (*)	
	Dec 2007 800 FU-PCs and Filter farm Switch		
*) The 4 RBs readout netwo	rk (GBE or Myrinet) allows the global DAQ system be	reconfigured with part	t of

BUs becoming FUs so LV1 maximum rate can be adjusted to fit the available Filter Farm selection power

20.. DAQ completion (not funded, 8 slices, 100 kHz...) 100% Infrastructures, xy1800 FU-PCs, EVB and FF Switches

DAQ PC/GBE material profile

	Dec. 05	Dec 06	De	ec 07	Jun 08	D	ec 08	Jun 09	
D2S	Completed								
	readout								
DAQ RU-BU		600 PCs Market Mar 06 Tender Jul 06				6	00 PCs		
Networks		2000 GBE				2	000 GBE		
EVB		50 kHz EVB				10	00 kHz EVB		1
Filter Farm					0-900 PCs			0-900 PCs	
	Firs	 <mark>t run (technical</mark>))		50 kHz HLT			100 kHz HL	T
- Up to 50 kHz readout		ut						Γ	
- HIL		L power limited							
reconfigured to fit optimum HLT rate		- Up to 50 kHz HTL							

DAQ 05-07: plans&milestones

- ✓ Apr 05 DAQ Pre-series DAQ completed. Integration started
- ✓ Aug 05 D2S Myrinet links and switches procured
- ✓ Jan 05 D2S FRL/FMM systems produced and tested
- May 06-Jun 06 USC FRL/FMM crates, Cables, Fibers and PCs installed
- Jul 06-Dec 06
- USC FED/FRL/FMM readout commissioning
- FED-FRL cables and interfaces auto-test, USC FED Builder Myrinet test
- USC-miniDAQ (8x8) sub-detector global DAQ commissioning
- May 06-Aug 06 Preseries integration: MTCC multi-detector full chain DAQ
- Aug 06-Feb 06 SCX DAQ GBE&PCs procurement and installation
 - DAQ PCs (600) and 2000 port GBE switch procurement
 - USC-SCX links: Test SCX FED builders and run SCX-miniDAQ (8x8)
 - Install 4 Readout Builders (512 PCs) with GBE-EVB (2000 ports

Oct 06-May 07 USC-SCX Central DAQ commissioning

- GTPe, FRL-eFED central DAQ auto test mode.
- Full DAQ integration (EVB,FF, DQM,Local storage)
- Central RCMS/DCS, DBs and Connection with remote data storage
- Multiple Readout Builders and multiple TTC/DAQ Partitions
- Feb 06-Aug 07 TriDAS system commissioning
 - SCX miniDAQ Trigger and DAQ integration (TTC/TTS)
 - Multiple Readout Builders and Trigger Partitions
 - Regular dry runs and training sessions
- Aug 07

Ready for first collision data taking

- Variable configuration from 50 kHz (10% Filter Farm), 15 kHz (100% Filter Farm)
- Jan 08-..... First phase DAQ completed (3 slices) for physics runs

CMS/SC TriDAS Revi HLT/CRGs procurement and installation: 36kHz and 100% HTL, 100 Hz on tape

DAQ software

Core framework and components

- System and communication services
- Hardware access facilities and device drivers
- Interface to external systems (e.g. DCS, computing services)
- Basic configuration and control facilities (GUI, script)
- Benchmarking and testing software
- Re-usable DAQ modules (e.g. event builders, FED readout)
- DAQ monitoring

Run Control and Monitor System

- Configuration, control and monitoring
- Interface to operators (GUI, script)
- Interface to DCS

Databases

- Persistency technology
- Data categories
- Data access tools
- Administration

Detector Controls

- Detector DCS coordination. Common tools development&support
- Framework and central DCS system
- DAQ infrastructure controls

DAQ first run configuration

