cess are handled by dipole subtraction [2 the contribution from $qg \rightarrow \gamma\gamma q$ via a line not the complete contribution to this and a gauge-invariant subset and it is enhance **ATLASTR HESTS**, **SS foat Higgs** a significe **Diphotone Interference** with the set of the s

LO (qg):

TO UD SO, WE HEEU TO HAVE AN EITOR ESTIMATE ON THE HITE SHAPE THOUGH.

Also want to consider other scenarios, but the range of questions stay about the same.

ATLAS Questions

Interfereometry & Width Workshop

Feb 20, 2014

Thursday, February 20, 14

Questions

- * What uncertainties source were considered for $\sigma_{Continuum}$ & σ_{ggH} ? (scale, PDF?)
- * Higher order corrections are large in $gg \rightarrow H$, do you think these changes are covered by the usual scale variations?
- * The quark initial diagrams are formally at leading order; what effort would be needed to bring this up to NLO?
- * How does the summed line-shape change if these uncertainty sources are varied?

* How should we deal with μ ?

- * Magnitude of the interference scales with ~1 / $\sqrt{\mu}$ (relative to the BW term). Since used NLO cross section σ_{ggH} and NNLO/NNLL cross section will be very different, should one try to use a relative μ to correct for the line shape?
- * Alternatively one could assume $\mu = 1$ for the interference contribution. But not very satisfactorily.
- * Which approach do you think is more satisfactorily form a theory point of view?
- * Linked to the question of μ : The continuum diphoton production cross section is measured, but of course cannot be split into the $gg \rightarrow \chi \chi$ contribution. To get a bit a feeling for the dependence on $\sigma_{Continuum}$ one could take the measured cross section and 'split' the $gg \rightarrow \chi \chi$ out from the expected ratios for all production modes. What would be the effect on the interference if this value would be found very different from the value of $\sigma_{Continuum}$ used in the interference?

Interfereometry & Width Workshop

Feb 20, 2014

3

ATLAS Questions