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Introduction
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Angular separation of decay products for a massive P, scales as 2mp/p7T’.

— jet radius parameter R should be process dependent and scale with pr.

In practice, the LHC collaborations
use a small number of R values.

AR(Decay Products)
N
(&)

There is a distinction between /arge

radius jets and small radius jets. .

From large radius jets, we have seen
many studies probing the top down
substructure of jets, at fine radial

scales. P FTE Y ST T P AT NN ST S I
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Why do we not optimize R per process and per energy scale?
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A Minor Setback: Jet Calibrations
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Can we make jet clustering more modular? setin!
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Jets from Jets: a modular way to cluster & calibrate _| am

o e M\
Introduce a new angular scale r < R; r
Cluster radius r jets into radius R jets. ‘S/
If chosen appropriately, the corrections r
and calibrations (and uncertainties!)

from r propagate to the large radius jets. v

All that must be specified ahead of time
is the small radius jet algorithm.

.. Every kinematic region of every analysis for every data-taking
condition can optimize the large radius parameter in order to maximize the
sensitivity to particular physics scenarios.

N.B. The set of jets above a threshold pt is IRC safe and so re-clustered jets inherit IRC safety.
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Re-clustered Jets

e

— Even without further considerations, re-clustering grooms the jets.
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Also, the effective area (pileup sensitivity) of re-clustered jets is smaller.
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Small radius jets can only be reliably calibrated to a certain pt threshold.
This threshold scales with r, but is ~ 20 GeV for r ~ 0.4.
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A Brief History in ... Re-clustering
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Grouping small radius jets to form composite systems of objects has been
used for quite some time - for instance in forming mj, ;. for jets ji.

Re-clustering was pioneered in recent ATLAS SUSY searches:
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Inclusive multijets: I\/IJz =) . reclustered jet / mass
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Something New: Re-clustered Grooming

o1 A
Tl M

Example: re-clustered trimming (RT):

o
w

_ o 3 I PYTHAW - WZ Mg -
Drop all small radius r jets i re-clustered = & og.aos[ fs=14Tev.m, =08Tev E
= N . — jet |
into the radius R _]et J |f % r antl-klR—lAO,ZOOG(-3V<pT < 300 GeV ]
O'Zj —*~RCp,>15GeV 7:
r NPV =80 = RTf,=01
pT,i < feut X pT,y = E PT.j 0150 o RTIL=02
J 0.1~ ' r=03 4
. [ ] anti-k ]
Which adds a new parameter, fout — 0.05[ v s ' E
. . . . [ L} o, ]
analogous to large radius jet trimming. L oo, 1
% 50 100 150 200
Small differences: f.,; is applied to a jet RC = Re-clustering ~ JetMass [GeV]
. . pr cut = 15 GeV
which has a small level of grooming
already applied and which has been Recall: f.,t can be optimized per
pileup corrected (not standard for the analysis and so can be pr (and
LHC experiments). pileup) dependent.
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Re-clustered Trimmed Jets in Action
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T AN

With low levels of pileup, there is not a large dependance on the radius r
jet algorithm.

As expected, RT jets with k; r = 0.3 jets and anti-k; R = 1.0 jets is nearly
identical to the large R trimmed analogue with the same parameters.
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Pileup Corrections

o AL
LS | = g \ 4
The modular structure of
. . » L L
re-clustering easily allows for 2 | ATLAS Simulation Preliminary e
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e Pileup calibrations via p x A* R S ;. P oumrommens 1 8
for each radius r jet, g - ®" Cleansing from 1 4,
) z - ' % 1309.4777 {2
and any residual © and NPV 0.05- ¥ 1%
corrections that are needed i % o 16
i . |
e Pileup jet removal via any one I ]
of many techniques.
y q 150 200
e.g. JVF/JVT, pileup ID, Mass [GeV]

cleansing, etc.
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E——
RT Jets with High Pileup
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The distribution of pileup corrected (via p x A*) Large R trimmed jets
changes shape similarly to pileup corrected radius r jets, RT.
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C/A jets seem to perform the worst, but this may also be an ft
dependent statement as the jet area varies by algorithm.
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Quantitative comparison - radius r jet algorithm
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Determining the size of r
T Vo
o e M\

Aside from the algorithm type, the only parameter that must be decided
ahead of time is r.

Pros for smaller r S U THAW - WZ - g ]

. . . 5 Q 0.250 V5=14TeV,m =08 Tev 3

Less sensitive to pileup (scales with r<) % | antiR=10,200 Gev <p* < 300Gy ]

Resolve finer structure 0.2F Y twsermimmes

[ NPV=20 Temreos 9

Cons for smaller r 015 e g

Larger residual calibration (as r — 0, 0.1 RTantik,

- b cut — V- 4

back to topo-clusters and PF objects) 0.05f b

Detector granularity (r < 0.1) o S
Phenomenological modeling (r < 0.1) 0 S0 100 150 200

Jet Mass [GeV]

N.B. RT provides for a natural transition between ‘Large’ and ‘small’
radius jets, based on the number of re-clustered (radius r) jets.
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Quantitative comparison - small radius r
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Background

So far, focused only on RT when
there is hard structure - what about
for the QCD background?

e Similar behavior for RT and
large R trimmed.

e Subtle differences that depend
on feyt and the algorithm.
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Re-clustering and Jet Substructure A
DN

Instead of the top-down approach to substructure, in the re-clustering
paradigm, there is bottom-up substructure.

Some variables come fully calibrated as a
result of the re-clustering process:

g T
® (Jet Mass) s - * |
® Number of subjets <
© Number of b-tagged subjets é’ o .

<

For other variables, constituents are o ]
inherited from the radius r jets.

PR IS R
-2 0 2

® N-subjettiness ratios 7j; Rapidity

® Width, energy correlations, pull, etc.
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e
RT Jet Substructure in Action
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Qualitatively, similar structure when using the trimmed jet constituents
and the inherited radius r constituents in RT.
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RT Jet Substructure: Quantitative Performance A
DN
. . e c 10% T T

For a fixed signal efficiency, the QCD 2 PYTHIA W WZ_. gl

. . . Kol 5=14 TeV, m, =08 Tev
rejection is very comparable between RT g v= 011203
and large R trimming. g)loz? sosrcercio i
Some information is ‘lost’ in the removed
(sub)jets, which impacts both methods. o e
Alternative: assign constituents by AR [ e
(drawback: increases pileup sensitivity) P TR T PR E T T T T

W Efficiency

It is expected that for similar parameters, RT and standard trimming will
perform similarly - however in practice RT could outperform standard
grooming techniques because it can be optimized per pt bin.
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E——
Data Storage and Speed
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Though not the main motivation, there are further benefits in re-clustering
from a computational perspective!. PYTHIA v/ = 8 TeV W/ — WZ
Storage .o
. . : 0.1 x 0.1 cells
After computing p, there is no longer o . r = 0.4 anti-k
a need to store calorimeter objects ] .
not contained inside jets above the oL
[ O All cells with E > 0
pr threshold. wb & Cellsin pr > 20 GeV jets
EY Cel‘ls in p7, > 20 ‘Ge\/‘ Area-corrected jets
Speed i )

Fastjet is very fast! But if you have ‘; B : E‘
m algorithms, then N log(N) 2o {8
becomes MN log(N), whereas for S L=
re-clustering, the additional step o j Slscc:% %
takes ~ no time. I T T

TThanks to T. Farooque, M. Casolino, and A. Juste for pointing us to this side benefit!
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E——
The Next Steps: Validating Calibrations

e An
T AN

There are two effects which could lead to mis-calibrated re-clustered jets:

Thresholds Even though (pF5°/pTF) =1, a non-zero resolution and a
falling pr spectrum can induce <pre°°/p”“th>
Nearby-jets Inclusively, <p'e°°/p”“e> = 1, but when jets are very nearby,
the response may differ from one on average.
These also impact large R groomed jets, but can be calibrated away.
— Requires further study by the experimental collaborations.

c \[s=7 TeV, L=35.9 pb' cMms - C T T ]
S total systematic uncertainty  PFJets s 01 ATLAS Preliminary /| Q
2 sl — romncum s (Anik B05) | B Ex #t vy 18
2 MG i 0<mi=05 b 88 [ V5=7TeV 12
2 —e— dam < r _ 1 el
ot < 0.05- J.Ldz,4.7 fo . 8
pun = L i
2.0.2- 15 F 16
< oF] 'y - % =’
. IS r 18
0.1k 4 3 [ « anti- kR =0.4 EM+JES, 04<R,, <05 |
. ) ~ -0.05— # anti-kR = 0.4 LOW+JES, 04<R,,<05 —
[ o anti-kR = 0.6 EM+JES, 0.6<R,,<07 |
[ F © anti-KR = 0.6 LOW+JES, 0.6<Ry, <07 |
.01 I 1 I I I
0 50 160 200 0. 100 200 300 400 500 600
jet
P, [GeV] Py [GeV]

Benjamin Nachman (SLAC) Jets from Jets August 20, 2014 19 /20



e
Conclusions and Future Outlook
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Re-clustering is a very modular paradigm for clustering jets

o The flexibility allows for jet £ "% evriAw - Wz - lag
algorithm optimization per @ | fe=14Tevim, =08 Tev |
analysis % anti-k, R = 1.0, 200 GeV < p!"' < 300 GeV

: @ 0.04- o 4

e There is a natural scheme for s o % %
corrections, calibrations, and - R & .
uncertainties 0.03- i

e Re-clustering can accommodate 5 s R Trmmed RT antik,
jet grooming [ Dr-es o

e Jet substructure is inherited 0.020 5o
from the radius r jets NPV

Its now up to the experimental collaborations to study re-clustering
as an alternative/complement for Run Il and beyond!
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BACKUP
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