

Jets from Jets

Re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

Benjamin Nachman

SLAC, Stanford University

based on arXiv:1407.2922

In collaboration with

Pascal Nef
Ariel Schwartzman
Maximilian Swiatlowski

Introduction

Angular separation of decay products for a massive \mathcal{P} , scales as $2m_{\mathcal{P}}/p_{\mathrm{T}}^{\mathcal{P}}$.

 \rightarrow jet radius parameter R should be process dependent and scale with p_T .

In practice, the LHC collaborations use a small number of R values.

There is a distinction between *large* radius jets and *small* radius jets.

From *large* radius jets, we have seen many studies probing the **top down** substructure of jets, at fine radial scales.

Why do we **not** optimize *R* **per process** and **per energy scale**?

A Minor Setback: Jet Calibrations

SLAC

Algorithms are not optimized per analysis due to non-trivial calibrations:

Calibration: The corrections to a jet 4-vector so that $\langle E^{\rm reco}/E^{\rm truth} \rangle = 1$ and is independent of η .

[Particle flow/Calorimeter cluster] inputs to jets are calibrated, but need to correct for e.g.

particles that were missed, merged, or below noise thresholds, energy loss in un-instrumented regions, and correlations between particles.

Can we make jet clustering more modular?

Jets from Jets: a modular way to cluster & calibrate

Introduce a new angular scale $\mathbf{r} < \mathbf{R}$; Cluster radius \mathbf{r} jets into radius \mathbf{R} jets.

If chosen appropriately, the corrections and calibrations (and uncertainties!) from **r** propagate to the large radius jets.

All that must be specified ahead of time is the small radius jet algorithm.

.. Every **kinematic region** of **every analysis** for **every data-taking** condition can optimize the large radius parameter in order to maximize the sensitivity to particular physics scenarios.

N.B. The set of jets above a threshold p_T is IRC safe and so re-clustered jets inherit IRC safety.

Re-clustered Jets

Small radius jets can only be reliably calibrated to a certain p_T threshold. This threshold scales with r, but is \sim 20 GeV for $r \sim$ 0.4.

ightarrow Even without further considerations, re-clustering *grooms* the jets.

Also, the effective area (pileup sensitivity) of re-clustered jets is smaller.

A Brief History in ... Re-clustering

Grouping small radius jets to form composite systems of objects has been used for quite some time - for instance in forming $m_{j_1...j_n}$ for jets j_i .

Re-clustering was pioneered in recent ATLAS SUSY searches:

0 Lepton Direct Stop Search: W/Top tag with re-clustered jet (mass)

Inclusive multijets: $M_J^{\Sigma} = \sum_i$ re-clustered jet *i* mass

Something New: Re-clustered Grooming

Example: re-clustered trimming (RT):

Drop all small radius r jets i re-clustered into the radius R jet J if

$$p_{T,i} < f_{\mathsf{cut}} \times p_{T,J} = \sum_{j} p_{T,j}$$

Which adds a new parameter, $f_{\rm cut}$ – analogous to large radius jet trimming.

Small differences: f_{cut} is applied to a jet which has a small level of grooming already applied and which has been pileup corrected (not standard for the LHC experiments).

Recall: f_{cut} can be optimized per analysis and so can be p_T (and pileup) dependent.

Re-clustered Trimmed Jets in Action

With low levels of pileup, there is not a large dependance on the radius r jet algorithm.

As expected, RT jets with k_t r=0.3 jets and anti- k_t R=1.0 jets is nearly identical to the large R trimmed analogue with the same parameters.

Pileup Corrections

The modular structure of re-clustering easily allows for

- Pileup calibrations via $\rho \times A^{\mu}$ for each radius r jet, and any residual μ and NPV corrections that are needed
- Pileup jet removal via any one of many techniques.

e.g. JVF/JVT, pileup ID, cleansing, etc.

RT Jets with High Pileup

The distribution of pileup corrected (via $\rho \times A^{\mu}$) Large R trimmed jets changes shape similarly to pileup corrected radius r jets, RT.

C/A jets seem to perform the worst, but this may also be an f_{cut} dependent statement as the jet area varies by algorithm.

Quantitative comparison - radius r jet algorithm

For r = 0.3 and $f_{cut} = 0.1$,

- The average mass is NPV stable
- Window efficiency is NPV stable
- C/A has the highest window efficiency, but worst resolution

Determining the size of r

Aside from the algorithm type, the only parameter that must be decided ahead of time is r.

Pros for smaller r

Less sensitive to pileup (scales with r^2) Resolve finer structure

Cons for smaller r

Larger residual calibration (as $r \to 0$, back to topo-clusters and PF objects) Detector granularity ($r \lesssim 0.1$) Phenomenological modeling ($r \lesssim 0.1$)

N.B. RT provides for a natural transition between 'Large' and 'small' radius jets, based on the number of re-clustered (radius r) jets.

Quantitative comparison - small radius r

For anti- k_t and $f_{cut} = 0.1$,

- The average mass is NPV stable
- Window efficiency is NPV stable
- Smaller *r* is better in terms of the resolution performance

Background

So far, focused only on RT when there is hard structure - what about for the QCD background?

- Similar behavior for RT and large R trimmed.
- Subtle differences that depend on f_{cut} and the algorithm.

Re-clustering and Jet Substructure

Instead of the **top-down** approach to substructure, in the re-clustering paradigm, there is **bottom-up** substructure.

Some variables come fully calibrated as a result of the re-clustering process:

- ① (Jet Mass)
- Number of subjets
- **3** Number of *b*-tagged subjets

For other variables, constituents are inherited from the radius r jets.

- **1** N-subjettiness ratios τ_{ij}
- 2 Width, energy correlations, pull, etc.

RT Jet Substructure in Action

Qualitatively, similar structure when using the trimmed jet constituents and the inherited radius r constituents in RT.

RT Jet Substructure: Quantitative Performance

For a fixed signal efficiency, the QCD rejection is very comparable between RT and large R trimming.

Some information is 'lost' in the removed (sub)jets, which impacts both methods.

Alternative: assign constituents by ΔR (drawback: increases pileup sensitivity)

It is expected that for similar parameters, RT and standard trimming will perform similarly - however in practice RT could outperform standard grooming techniques because it can be optimized per p_T bin.

Data Storage and Speed

Though not the main motivation, there are further benefits in re-clustering from a computational perspective[†].

PYTHIA $\sqrt{s} = 8 \text{ TeV } W' \rightarrow WZ$

Storage

After computing ρ , there is no longer a need to store calorimeter objects not contained inside jets above the ρ_T threshold.

Speed

Fastjet is very fast! But if you have m algorithms, then $N \log(N)$ becomes $MN \log(N)$, whereas for re-clustering, the additional step takes \sim no time.

[†]Thanks to T. Farooque, M. Casolino, and A. Juste for pointing us to this side benefit!

The Next Steps: Validating Calibrations

There are two effects which could lead to mis-calibrated re-clustered jets:

Thresholds Even though $\langle p_{T,r}^{\rm reco}/p_{T,r}^{\rm true}\rangle=1$, a non-zero resolution and a falling p_T spectrum can induce $\langle p_{T,R}^{\rm reco}/p_{T,R}^{\rm truth}\rangle\neq 1$.

Nearby-jets Inclusively, $\langle p_{T,r}^{\rm reco}/p_{T,r}^{\rm true}\rangle=1$, but when jets are very nearby, the response may differ from one on average.

These also impact large R groomed jets, but can be calibrated away.

→ Requires further study by the experimental collaborations.

Re-clustering is a very modular paradigm for clustering jets

- The flexibility allows for jet algorithm optimization per analysis
- There is a natural scheme for corrections, calibrations, and uncertainties
- Re-clustering can accommodate jet grooming
- Jet substructure is inherited from the radius r jets

Its now up to the experimental collaborations to study re-clustering as an alternative/complement for Run II and beyond!

BACKUP