b-tagging in the environment of boosted objects

Dominik Duda on behalf of the ATLAS collaboration August 19th, 2014

The ATLAS b-tagging algorithms

- ATLAS liftime based b-tagging algorithms are based on:
 - Track impact parameters (IP)
 - Secondary vertices (SV)
 - Multivariate techniques (combining both)
- ATLAS default tagger: MV1
 - Based on artificial neural network
 - Uses variables from one IP and two SV based algorithms

Introduction

- Identification of isolated b-jets was intensively studied in the data recorded in Run I by the ATLAS
 - Performance is well understood for jets with a transverse momentum between 20 GeV and 300 GeV
 - b-tagging efficiency for jets with a p_T around $100\,GeV$ can be measured with a total systematic uncertainty below 2%.

- High luminosity and increased energy \sqrt{s} in LHC Run II will open up new regions of phase space at high p_T
- Will require excellent b-tagging performance at higher p_T and in boosted topologies

Boosted topologies

- Decay products of boosted particles tend to be collimated
- Angular separation of decay products is approximated by

$$\Delta R \approx \frac{2m}{p\tau} \tag{1}$$

- For $p_T^{\mathrm{top}} > 450\,GeV$ and $p_T^{\mathrm{Higgs}} > 300\,GeV$ decay products tend to have a separation smaller than 0.8 (twice the radius of jets typically used for *b*-tagging in ATLAS)
- Standard reconstruction techniques start failing to resolve decay products individually
- Ongoing efforts (b-tagging in boosted environments) in ATLAS:
 - Flavour tagging with track jets: https://cds.cern.ch/record/1750681
 - b-tagging in boosted topologies: https://cds.cern.ch/record/1750682

Problems related to b-tagging in dense environments

- Degradation of jet direction resolution (Angular separation (b-hadron, jet axis))
 - Several b-tracks do not get matched to the jet
 - Algorithm performance degrades

- Light-flavour contamination
 - Change of jet properties
 - Impacts b-taggers trained upon pre-defined reference distributions
- Use track purity, defined as $N_b^{\rm tracks}/N_{\rm in\ Jet}^{\rm tracks}$, to quantify

 b-tagging efficiency decreases by up to a factor of 4.

b-tagging efficiency decreases
 by up to a factor of 2

D. Duda, BOOST14

Problems related to b-tagging in dense environments

- Study *b*-tagging related quantities for merged *b*-jets (in $t \to bW \to bq\bar{q}$ decays)
 - Merged b-jets: jet contains b-quark and light/c-quark from W-decay
- Several quantities used by MVA tagging tools lose separation power
 - Output of IP based tagger
 - p_T sum of tracks at SV/p_T sum of all tracks in the jet
 - Angular separation between vertex direction and jet axis
- Quantities dissimilar to the training samples
- Approaches to improve performance
 - Develop dedicated b-tagging algorithms
 - Jets with smaller distance parameter R

Adjusting b-tagging algorithms to boosted topologies

- b-tagging algorithm dedicated to boosted topologies
 - Introduce additional input quantities that are less overlap dependent
 - Substructure or jet shape related (e.g. jet width)

$$w_{\rm jet} = \frac{\sum_{i=1}^{N} \rho_T^{\rm trk}{}_i \Delta R({\rm trk}_i, {\rm jet})}{\sum_{i=1}^{N} \rho_T^{\rm trk}{}_i}$$

- Track with the 3rd highest d_0 significance $\equiv d_0/\sigma_{d_0}$
- Emphasise jets from boosted t\(\ti\) decays more strongly in the training
 - Enrich statistics of merged jets
- Train b- vs. light-flavour jets (MVb) and bvs. c-jets (MVbCharm)

Performance of the new tagger

- Performance comparison to ATLAS
 b-tagging algorithms
- In sample with a high fraction of merged b-jets $(g_{KK} \rightarrow t\bar{t} \text{ with } m_{KK} = 2.5 \, \text{TeV})$
- b-tagging efficiency vs. $\Delta R(b-\text{hadron}, \text{jet})$ (below)
 - MVb tagger is less affected by jet overlap
 - Efficiency loss with increasing shift of jet axis is reduced
 - Improved by a factor of 1.5.

- Light-flavour rejection rate vs. b-tagging efficiency
- ullet Performance in jet sample obtained from $g_{KK}
 ightarrow t \bar{t}$ decays with $m=2.5\, TeV$ is improved by 50% to 160%

Flavour tagging with track-jets in boosted topologies

- b-tagging performance is strongly degraded in dense environments due to a worse jet direction resolution
- Possible solution: Using track-jets instead of calorimeter-jets for b-tagging in boosted topologies
- Advantages:
 - Optimize track jets for the best b-tagging performance (e.g. smaller distance parameters R=0.4,0.3,0.2), and calorimeter jets for the best interpretation of the hadronic final state
 - Very flexible can easily associate track jets via ghost matching to any calorimeter based object (only one data/MC b-tagging calibration needed)
 - Better resolution of jet direction from using small R jets
 - Relatively pileup insensitive
 - Able to easily study jets corresponding to low p_T b-hadrons
- Current strategy (work flow):
 - Reconstruct decay of boosted massive particle into an all hadronic final state using 'large'-R jets
 - Run clustering on selected tracks to reconstruct track jets
 - Match track jet and large-R jet with ghost-association procedure
 - b-tag track jets (using MV1)

Flavour tagging with track-jets in boosted topologies

- Example: b-tagging performance in events in which a RS graviton decays via $G_{RS} \to hh \to b\bar{b}b\bar{b}$ with G_{RS} masses between $1.0\,TeV$ and $2.4\,TeV$.
 - Small-R jets more often resolve both decay products
 - R = 0.4 track jets: 40% of events have 2 b-jets
 - $R = 0.3 \ (R = 0.2) \ \text{track jets: } 80\% \ (85\%) \ \text{of events}$
 - Jets with smaller R have a much better resolution of the jet direction (this is important !!! see slide 5)

Flavour tagging with track-jets in boosted topologies

- b-identification efficiency (efficiency to find a jet around the b-hadron and b-tag it) for jets ghost-matched to the large-R jets (left) and to its subjets (middle)
 - R = 0.4 jets have a worse performance (too large to resolve components individually)
 - R = 0.2 track jets have the best performance
 - Small-R track jets can also more easily access low p_T
 b-hadrons
 - Leads to significant enhancement in performance when requiring 4 b-tags(right)

Summary and Conclusion

- Important to maximise b-tagging performance in boosted topologies (like in $h o b \bar{b}$ or $t o b W o b q \bar{q}$ decays) in Run II
- Problems in these environments are related to the shift of the jet axis direction and contamination with tracks from other flavour decays
 - Losing tracks in the track-to-jet association
 - Degradation of the basic b-tagging algorithms
 - Change of jet properties wrt. training distributions
- Possible approaches to overcome these problems are:
 - Use track-jets independently optimised for b-tagging.
 - Usage of smaller distance parameters in the jet clustering
 - Developing a dedicated b-tagging algorithm
- Large improvements due to the usage of track jets and a dedicated b-tagging algorithm
- Ongoing work to calibrate both approaches on 2012 data
- Merge both studies into one complimentary approach

Backup

Track(jet) Selection

- Track selection
 - $p_T > 500 MeV$
 - $d_0 < 1.5 mm$
 - $z_0 \sin \theta < 1.5 mm$
 - Hits in the Inner Detector
 - At least one hit in the Pixel detector
 - At least six hits in the Pixel + SCT
- Trackjet selection
 - At least two tracksb
 - $p_T > 7 GeV$
 - $|\eta| < 2.5$

$G_{RS} \rightarrow hh \rightarrow b\bar{b}b\bar{b}$

- ullet p_T spectra for the leading and subleading Higgs bosons for two RS graviton masses
- ullet Angular separation of the $bar{b}$ pair coming from the leading and subleading Higgs bosons
- For $m_{G_{RS}}=1\, TeV$ the decay products are almost always in the regime where R=0.4 jets resulting from the two b-hadrons would merge
- Smaller distance parameter in the jet clustering would be beneficial

Problems related to b-tagging in dense environments

- Study b-tagging related quantities for merged b-jets (in $t \to bW \to bq\bar{q}$ decays)
 - Merged b-jets: jet contains b-quark and light/c-quark from W-decay
- Several quantities lose separation power wrt light-flavour jets (as shown previously)
- Most quantities are not that strongly affected (like inv. mass or decay length significance)
- In general: Properties of vertices are not that strongly affected as additional tracks are intrinsically rejected by the vertex fit.

from simulated
 SM tt̄ events

Performance of the new tagger

- Performance comparison to ATLAS tagging algorithms
 - Light-flavour rejection rate vs. b-tagging efficiency
- MVb shows very similar performance to ATLAS default tagger in the SM tt̄ sample
- MVb shows much better performance in SM QCD for extremely high p_T jets

