

Particle-level study of non-resonant HH→4b for HL-LHC

David Wardrope, Eric Jansen, <u>Nikos Konstantinidis</u>, Ben Cooper, Nurfikri Norjoharuddeen, Rebecca Falla

University College London

Boost 2014 Workshop, London, 19/08/2014

Outline

- Introduction
- Signal kinematics
- Signal and Background samples
- Event selection strategy
- Additional angular and kinematic variables
- Further considerations
- Conclusions

Nikos Konstantinidis

Introduction

- Non-resonant Higgs-pair production a key goal for HL-LHC
 - NLO cross section ~35fb (e.g. arXiv: 1401.7340)
- HH \rightarrow 4b the most abundant final state: BR=(0.577)²=~33%
 - But huge multi-jet and ttbar bkgs
- In arXiv:1307.0407, we showed that boosted X→HH→4b is a very sensitive topology for resonant Higgs-pair production
 - Using 4 b-tagged anti-k_t R=0.4 (akt4) jets
 - Confirmed by ATLAS and CMS Run-1 results
- But non-resonant HH has also relatively hard $\ensuremath{p_{T}}$ spectrum
 - ~36% of events with both $p_T > 150 \text{GeV}$
 - $\sim 17\%$ of events with both $p_T > 200 \text{GeV}$
 - ~3% of events with both p_T>300GeV

HH→4b kinematics at HL-LHC

 $\Box \Delta R$ between b-quarks from Higgs decay depends on Higgs p_T

• For p_T<~300GeV, it appears more appropriate/efficient to reconstruct the Higgs as two anti-kt R=0.4 jets rather than a single Cambridge-Aachen R=1.2 jet

Signal and Background samples

Process	Generator	PDF set	$\sigma \times \text{BR}$ [pb]
$HH \rightarrow b\overline{b}b\overline{b}$	MadGraph + Pythia	CTEQ6L1	$1.16\cdot 10^{-2}$
$b\overline{b}b\overline{b}$	Sherpa	CT10	219
$b\overline{b}c\overline{c}$	Sherpa	CT10	477
$t\overline{t}$	Powheg + Pythia	CT10	212
$ZH \rightarrow b\overline{b}b\overline{b}$	Рутніа	CTEQ6L1	$3.56 \cdot 10^{-2}$
$t\bar{t}H(\rightarrow b\overline{b})$	Рутніа	CTEQ6L1	$1.36 \cdot 10^{-1}$
$H(\rightarrow b\overline{b})b\overline{b}$	MadGraph_aMc@nlo + Pythia	CTEQ6L1	$4.89 \cdot 10^{-1}$

- bbbb and bbcc filtered to have at least four partons with p_T >30GeV and $|\eta|$ <2.7
 - NLO k-factor of 1.5 applied (Phys.Rev.Lett. 107 (2011) 102002)
 - Other multijet bkgs are negligible after b-tagging
- ttbar filtered to have at least one c or τ in the top decays and four partons/taus with p_T >30GeV and $|\eta|$ <2.7
 - Others are negligible after b-tagging

Nikos Konstantinidis

Event Selection with akt4 jets

Jet selection

p_T > 40 GeV
|η| < 2.5

Event must contain at least four such jets, which are formed into dijets Event is weighted by $\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_4$, with $\varepsilon_b = 0.7$, $\varepsilon_{c,\tau} = 0.2$, $\varepsilon_l = 0.01$

Dijet selection

- p_T > 150 GeV
- $\Delta R(jet, jet) < 1.5$
- At least two such dijets
- Dijet "12": |*m*₁₂ − 115| < 25 GeV
- Dijet "34": |*m*₃₄ − 110| < 25 GeV

Results at this point of selection

Requirement	HH	bbbb		bbcc	ttbar	Hbb	ZH	ttH
2 dijets	897	1.54×1	0 ⁶ 3	.65 × 10 ⁵	9.48×10^{5}	70.5	711	$6.77 imes 10^3$
2 dijets <i>m_H</i>	628	2.21×1	0 ⁵ 5	$.18 imes 10^4$	$2.4 imes 10^5$	22.2	290	$1.65 imes 10^3$
	Real	irement	S	B	S/R	5/	\sqrt{R}	
	Requ	Requirement		D	5/6	5/	V D	Numbers
								for
	2 dij	ets	897	2.86 imes 10	⁶ 0.00031	4 0.5	531	3000fb ⁻¹
	2 dij	ets <i>m_H</i>	628	5.15×10^{-10}	⁵ 0.00122	2 0.8	376	

• Main conclusions at this point:

- bbbb and ttbar dominate and are similar size
- Single-Higgs processes similar size as signal

- s/b very small (0.12%) and statistical significance ${\sim}0.9\sigma$

Nikos Konstantinidis

Non-resonant HH \rightarrow 4b at HL-LHC

Suppressing ttbar (ttbar veto)

- Remaining ttbar events are predominantly bcbc
- Suppress ttbar further by attempting to reconstruct the hadronic top decays
 - For each di-jet:
 - take least b-tagged jet (jet 2), look for nearby ($\Delta R < 2$) jet with pT>40GeV(jet 3) and form m_{23} (the W from the top decay) and m_{123} (the top)
 - Form "ttbar veto" MVA

ttbar veto results

Requirem	ient	HH	bb	bb	bbcc	ttbar	Hbb	ZH	ttH
2 dijets		897	$1.54 imes10^{6}$		3.65×10^{5}	$9.48 imes 10^{5}$	70.5	711	6.77×10^{3}
2 dijets n	1 _H	628	2.21	× 10 ⁵	$5.18 imes 10^4$	$2.4 imes10^5$	22.2	290	1.65×10^{3}
Top Veto		562	$2.01 imes 10^5$		$4.63 imes 10^4$	$9.73 imes 10^4$	19.5	266	664
Requirement		nent	S	В	S/B		S/\sqrt{B}	_	
-	2 dijets		897	2.86 × 10	0.00031	14	0.531	Numbers	
	2 dijets m _H 6		628	5.15×10^{-10}	⁵ 0.0012	2	0.876	for 3000fb ⁻¹	
Top Veto		562	3.45×10^{-10}	⁵ 0.0016	3	0.956	000010		

- For 90% signal efficiency, 60% ttbar rejection
- Slight improvement in s/b and statistical significance

Additional angular/kinematic variables

- 10 uncorrelated variables describe fully the kinematic and angular/spin information of the 4b system
 - m, y, p_T of the 4b system and masses of the two dijets
 - 3 decay angles (in resp. rest frames) & 2 angles between decay planes
- Used extensively in $H \rightarrow 4$ leptons channel

Nikos Konstantinidis

Non-resonant HH \rightarrow 4b at HL-LHC

Kinematic variables

Nikos Konstantinidis

Non-resonant HH→4b at HL-LHC

11

Â

Angular variables

10-var MVA: \mathcal{D}_{kin}

Correlation Matrix (background)

Correlation Matrix (signal)

Non-resonant HH→4b at HL-LHC

Results with 10-var MVA

3000fb⁻¹

Requirement	ΗH	bbbb	bbcc		ttbar	Hbb	ZH	ttH
2 dijets	897	$1.54 imes10^{6}$	3.65×10^{5}		9.48×10^{5}	70.5	711	$6.77 imes 10^{3}$
2 dijets <i>m_H</i>	628	$2.21 imes 10^5$	5.18	3×10^4	$2.4 imes 10^5$	22.2	290	$1.65 imes 10^3$
Top Veto	562	$2.01 imes 10^5$	4.63	$3 imes 10^4$	$9.73 imes 10^4$	19.5	266	664
MVA	300	$1.52 imes 10^4$	$3.29 imes 10^3$		$1.34 imes 10^4$	5.51	23.5	202
		Requirement	S	В	S/B	S/v	√B	
		2 dijets	897	2.86 × 1	.0 ⁶ 0.00031	.4 0.5	31	Numbers
		2 dijets <i>m_H</i>	628	5.15×1	.0 ⁵ 0.0012	2 0.8	76	for

562 3.45×10^5

 3.21×10^{4}

0.00163

0.00932

0.956

1.67

• A nearly ten-fold improvement in s/b and a very substantial increase in the statistical significance

300

– ~x3 effective increase in statistics!

Top Veto

MVA

- The non-4b backgrounds can be suppressed more by better c/τ -jet rejection and/or by using the full shape of the b-tagging variables
 - E.g. for c/ τ -jet rejection factor 10 (instead of 5)
 - the bbcc background becomes 5% of total bkg (instead of 10%)
 - the ttbar is reduced further (but still makes up a sizeable fraction of the total bkg)
 - s/b improves by ~30%
 - the statistical significance becomes $\sim 2\sigma$ (instead of $\sim 1.7\sigma$)
- Additional sensitivity by using the full shape of \mathcal{D}_{kin}
- The p_T spectrum of the Higgs bosons in the signal holds the key in the sensitivity of the 4b channel

Conclusions

- Observing the SM Higgs-pair production is one of the key targets for HL-LHC, but will be one of the greatest challenges!
- HH→4b is the most abundant final state, but suffers from large backgrounds (multi-jets and ttbar)
 - Boosted topology and 4 b-tags (4 akt4 jets in 2 dijets with pT>150GeV) is the strategy to suppress backgrounds
- The use of 10 uncorrelated angular/kinematic variables offers significant improvement in the sensitivity of the 4b channel $\sim 1.0\sigma \rightarrow \sim 1.7\sigma$ (~effective factor ~3 increase in statistics)
- Additional improvements can be achieved when using the full shape of the combined discriminant, as well as the shape of the b-tagging discriminant in the four jets