Searches with boosted bosons in ATLAS

Bonnie Chow

on behalf of the ATLAS collaboration

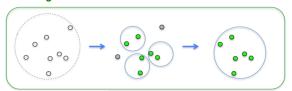
Ludwig-Maximilians-Universität

August 20th, 2014

Why "boosted"?

- lacktriangle "Boosted" refers to particles with \sim energies \geq twice their masses
- ▶ For decays of $W/Z/H/top \rightarrow decay$ products reconstructed as single "fat-jet"
- Many interesting ideas developed to explore this kinematic regime
- Further our understanding of the SM
- Search for new physics!

Overview of searches covered:

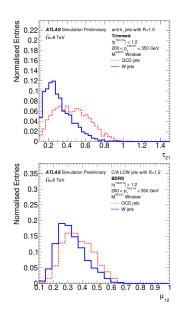

- ► Mono-hadronic W/Z decays
- Vector-like quarks
- Exotic di-boson searches
- Boosted Higgs

Jet substructure and grooming

Used to remove pileup and underlying event (UE) effects, and to help identify boosted objects

- ► **Trimming:** divide large-radius jets into subjets, then remove soft components
- Pruning: removes soft components, additional veto on wide-angle radiation
- Filtering: like trimming, but also discard jet if insufficient subjets remain

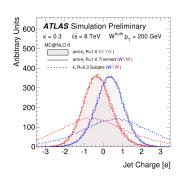
Filtering


Improves mass resolution of hadronically decaying boosted objects!

More jet substructure

Many variables which help to distinguish different kinds of jets, e.g. ...

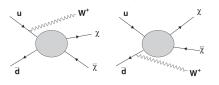
- N-subjettiness: τ_N, expresses how likely jet is to have N or less sub-jets
- Mass-drop: defined at last stage of recombination (two 'proto-jets' combining to form one jet), μ₁₂ is fraction of mass carried by most massive proto-jet


ATL-PHYS-PUB-2014-004

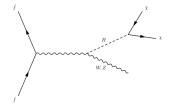
Boosted W/Z identification

Specifically for boosted W/Z can use in addition:

- ▶ τ_N : Better discrimination with ratios e.g. τ_1/τ_2 for W/Z
- Jet charge: sensitive to charge of hadronically decaying heavy particles
- ▶ Take large-radius jet, in order to capture all decay products (cone of $\Delta R \sim 1.0$ usually sufficient for boosted W/Z)
- ► Cut on the 'groomed mass', in a window around m_W (m_Z)

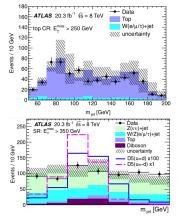

Validated in data and simulation for various W processes

ATLAS-CONF-2013-086


Mono-hadronic W/Z decays

Dark matter (DM) pair production in association with W/Z e.g.

DM searches with W/Z

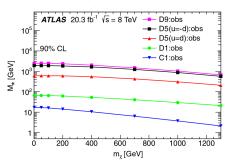


Associated Higgs production with Higgs→invisible

- ▶ Boosted W/Z jets reconstructed with C/A (R = 1.2)
- ▶ Mass drop + substructure to identify fat-jet: $p_T > 250 \text{GeV}$, $|\eta| < 1.2$, $50 < m_J < 120 \text{GeV}$
- ightharpoonup Veto events with extra narrow jets suppress $t\bar{t}$, multijet bkgs

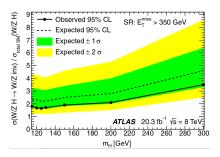
DM searches with W/Z bosons

*only D5 constructive and destructive cases shown here, scaled


PRL 112, 041802 (2014)

Bonnie Chow

MIII Ludwig-Maximilians-Universität


- TopCR used to validate large-R jet
- Signal regions: $E_T^{miss} > 350(500) \text{GeV}$
- ▶ 20.3fb⁻¹ at 8TeV

For various models, derived 90% C.L. exclusion limits on the effective theory mass scale M_{\ast}

Associated Higgs production with Higgs→invisible

Limits on simple DM production theory, with a light mediator (the Higgs)

 20.3fb^{-1} at 8 TeV

For $m_H = 125 \text{GeV}$:

- ▶ Upper limit on xsec: 1.3pb at 95% C.L.
- ► Compare to SM NLO prediction for associated production xsec: 0.8pb
- $E_T^{miss} > 350 \text{GeV}$ one signal region only

PRL 112, 041802 (2014)

Vector-like Quarks (VLQ)

Vector-like \rightarrow left and right-handed components transform in same way under $SU(3) \otimes SU(2) \otimes U(1)$

```
SM quarks - only left-handed charged currents (V-A) VLQ - both left and right-handed charged currents (V)
```

- ▶ Can have same charge as b, t-quarks (B', T')
- Exotic charges also allowed in some models e.g. $T_{\frac{5}{3}}$
- Arranged in weak isospin singlets/doublets/triplets
- Assume usually only interactions with 3rd-gen. quarks

Vector-like Quarks (VLQ)

Can appear in:

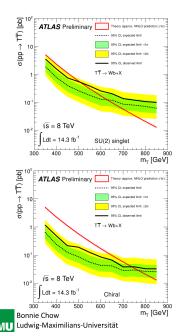
- ► Composite Higgs models excited resonances of bound states which produce SM particles
- ► Warped or extra dimensions excited partners of SM particles
- "Little Higgs" models partners of SM fermions in larger group representation
- Gauged flavour group required to cancel anomalies in the gauged flavour symmetry
- ► Non-minimal SUSY extensions introduced to increase Higgs mass corrections without affecting EW precision tests

Search for VLQs in ATLAS

Search for pair produced heavy top-like quarks $T\bar{T}$:

- ▶ dominant decay mode $T \rightarrow Wb$, if T is isospin singlet
- ▶ Zt, Ht also sizable in this case

Investigate also limits on Y quark:


- ▶ Isospin partner of *B* quark arranged in isospin doublet
- ► Electric charge -4/3
- ▶ Decays exclusively $Y \rightarrow W^-b$
- Experimentally indistinguishable from chiral fourth generation
 T quark

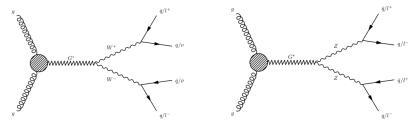
Search for VLQs in ATLAS

- ▶ Look at lepton+jets, exactly one e/μ , ≥ 4 anti- k_t 0.4 jets
- Substantial boost of W small angular separation between W decay products
- ▶ Heavy T → highly energetic W and b, with large angular separation
- ▶ Split according to hadronic decay products of *W*:
 - ▶ Both jets are reconstructed separately, $p_T^{ij} > 200 \text{GeV}$
 - ▶ Single, large, high p_T jet, $p_T > 250$ GeV (boosted Ws)
 - Require $60 < m_J/m_{jj} < 120 \text{GeV}$

ATLAS-CONF-2013-060

Search for VLQs in ATLAS

Observed exclusion limits at 95%C.L.


- ▶ 14.3fb⁻¹at 8TeV
- ▶ **T** quark: $m_T > 505$ GeV
- Combining with previous ATLAS search $(T\bar{T} \to Ht + X, with H \to b\bar{b})$: $m_T > 670 \text{GeV}$
- **Y** quark: $m_Y > 740 \text{GeV}$

ATLAS-CONF-2013-060

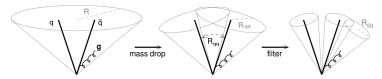
*for VLQ search in Z b/t + X channel: ATLAS-CONF-2014-036

Di-boson searches

Various SM extensions predict heavy resonances decaying to pairs of EW bosons (warped extra dimensions, GUTs...etc)

Only public results for semi-leptonic search in ATLAS

ightarrow lepton requirement helps suppress multijet bkg

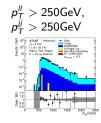

(also have WZ resonance searches in leptonic channel)

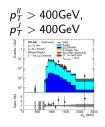
Resonant diboson production $\rightarrow I^+I^-q\bar{q}$

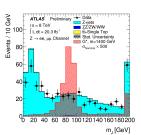
Spin-2 (Bulk Randall-Sundrum) Kaluza-Klein gravitons $G^* o ZZ$

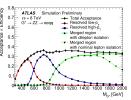
Spin-1 gauge boson $W' \to ZW$ from Sequential SM with modified coupling to $\mathsf{ZW}^{[1]}$

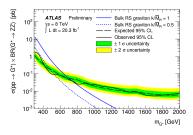

- ▶ Boosted W/Z jets reconstructed with C/A (R = 1.2)
- ▶ Other narrow jets as anti- k_t 0.4, $p_T > 30$ GeV
- ▶ Improve acceptance of highly boosted Zs ($p_T > 800 \text{GeV}$) optimised isolation for dilepton objects
- Use substructure techniques to identify boosted bosons

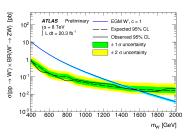



[1] G. Altarelli, B. Mele, and M. Ruiz-Altaba, Z. Phys. C 45, 109 (1989)


Resonant diboson production $\rightarrow l^+l^-q\bar{q}$


- Split into three exclusive regions by boson and jet p_T
- ▶ 70 < m_J/m_{jj} < 110GeV for hadronically decaying W/Z

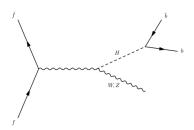




ATLAS-CONF-2014-039

Resonant diboson production $\rightarrow l^+l^-q\bar{q}$

95% C.L. upper limits for production $\sigma \times$ branching fraction:

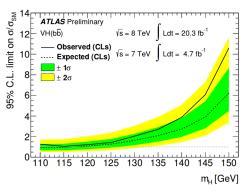


Exclusion of mass values (lower limits 95% C.L.):

- ▶ 20fb⁻¹ at 8TeV
- ▶ 740GeV for KK graviton
- ▶ 1590GeV for W' boson

ATLAS-CONF-2014-039

Associated Higgs production with $H \rightarrow b\bar{b}$



- ► Higgs not boosted enough at 8TeV→no need to use substructure
- ► Even for *p*_T > 200GeV, b-jets usually distinguishable

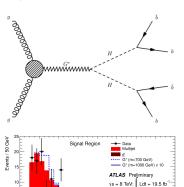
- ▶ anti- k_t 0.4 jets (2 b-tagged, additionally ≤ 1 jet
- Split channels by lepton multiplicity:
 - ► 0/: various E_T^{miss} cuts to suppress multijet bkg
 - ▶ 1/: $m_T^W < 120 \text{ GeV}$
 - ▶ 21: 83 < m_{II} < 99GeV</p>

ATLAS-CONF-2013-079

Associated Higgs production with $H \rightarrow b\bar{b}$

No significant gain for 8TeV dataset in using boosted techniques

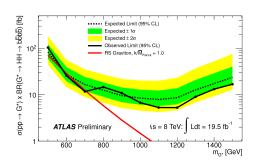
Work ongoing to investigate new methods for RunII, at 14TeV - e.g. Higgs tagger


 $m_H = 125 \text{GeV}$, 95% C.L. upper limit:

- ► 1.4×SM expectation on production σ
- $ightharpoonup 20.3 {
 m fb}^{-1}$ at ${
 m 8TeV}$, ${
 m 4.7 fb}^{-1}$ at ${
 m 7TeV}$

ATLAS-CONF-2013-079

Resonant Higgs-pair prod \rightarrow b \bar{b} b \bar{b}


Spin-2 KK graviton $G^* \to HH \to b\bar{b}b\bar{b}$ (Bulk Randall-Sundrum, with warped extra dimension)

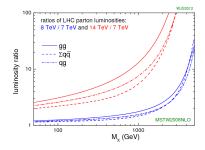
- Assumes SM Higgs, $m_H = 125 \text{GeV}$
- ► Coupling $k/\bar{M}_{Pl} = 1.0$, corresponds to first KK excitation of G^*
- $ightharpoonup \ge 4 \text{ MV1 b-tagged jets (anti-}k_t 0.4)$
- Form two unique dijet systems, $p_T > 200 \text{GeV}$, $\Delta R < 1.5$

ATLAS-CONF-2014-005

Resonant Higgs-pair prod \rightarrow b \bar{b} b \bar{b}

95% C.L. limits:

- ▶ 19.5fb⁻¹ at 8TeV
- ► KK graviton mass: $590 < m_{G^*} < 710 \text{GeV}$
- $\sigma(pp \to G^*) \times BR(G^* \to HH \to b\bar{b}b\bar{b}$: 7fb for $m_{G^*} = 1$ TeV


No evidence for new resonances, search used to set limits for this scenario

Currently no public results for boosted topology - however already in the pipeline

ATLAS-CONF-2014-005

RunII prospects

More data! Higher energy+higher luminosity →higher pile up

*Lumi plot from CMS-NOTE-13-002

ATL-PHYS-PUB-2012-004

- Boosted bosons increasingly important
- New production modes will become accessible, e.g. for some singly produced VLQ
- "Higgs factory" precision measurements, observation of Higgs self-coupling?
- Search for new physics

Summary

- Wide variety of techniques developed for boosted objects
- ▶ Help to identify boosted bosons, improve mass resolution
- Will become especially interesting as the centre-of-mass energy increases
- Extend current limits on searches
- New physics may become accessible

Thank you! And stay tuned for more!

Backup...

Jet substructure variable definitions

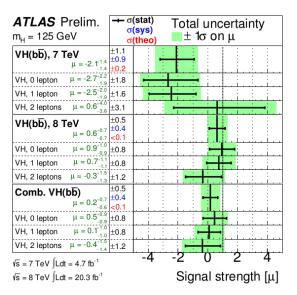
▶ Mass-drop: μ_{12} defined at last stage of recombination, where two 'proto-jets' are combined to form one 'fat-jet'. μ_{12} is the mass fraction of the heavier proto-jet:

$$\mu_{12} = \frac{\max(m_1, m_2)}{m_{12}}$$

N-subjettiness: Describes how similar the jet substructure of a given jet is, to N or fewer subjets:

$$\tau_{N} = \frac{\sum_{k} p_{T,k} (\min[\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k}])^{\beta}}{\sum_{k} p_{T} (R_{0})^{\beta}}$$

where β is an angular weighting, R_0 is the characteristic jet radius


Search for VLQs in ATLAS - selection

Selection	Requirements		
Preselection	One electron or muon		
	$E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T} > 60 \text{ GeV}$		
	\geq 4 jets, \geq 1 <i>b</i> -tagged jets		
loose selection	Preselection $\geq 1 W_{\text{had}}$ candidates		
	$H_{\rm T} > 800~{\rm GeV}$		
	$p_{\rm T}(b_1) > 160 \text{ GeV}, p_{\rm T}(b_2) > 80 \text{ GeV}$		
	$\Delta R(\ell, \nu) < 1.2$		
tight selection	loose selection		
	$\min \Delta R(\ell, b) > 1.4, \min \Delta R(W_{\text{had}}, b) > 1.4$		

Associated Higgs production with $extbf{H} ightarrow b ar{b}$ - selection

Object	0-lepton	1-lepton	2-lepton		
Leptons	0 loose leptons	1 tight lepton	1 medium lepton		
		+ 0 loose leptons	+ 1 loose lepton		
		2 b-tags			
Jets	$p_{\mathrm{T}}^{\mathrm{jet_1}} > 45 \; \mathrm{GeV}$				
	$p_{\mathrm{T}}^{\mathrm{jet_2}} > 20 \; \mathrm{GeV}$				
	$+ \le 1$ extra jets				
Missing E_T	$E_{\rm T}^{\rm miss} > 120~{\rm GeV}$	$E_{\rm T}^{\rm miss} > 25~{\rm Gev}$	$E_{\mathrm{T}}^{\mathrm{miss}} < 60 \mathrm{GeV}$		
	$p_{\rm T}^{\rm miss} > 30~{\rm GeV}$				
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$				
	$\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$ $\min[\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})] > 1.5$				
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$				
Vector Boson	-	$m_{\mathrm{T}}^{W} < 120 \mathrm{GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$		

Associated Higgs production with Ho bar b - μ

