

INFN and University of Milano Bicocca ¹

Search for a heavy resonances decaying in final states with boosted W/Z jet in CMS at 8 TeV

Speaker: Raffaele Gerosa¹

on behalf of the CMS Collaboration

6th International Workshop on Boosted Object, UCL, London (UK)

Introduction

Many theories beyond SM predict existence of massive resonances coupled to vector bosons (X → WW, WZ, ZZ)

→ RS and Bulk Gravitons

- → Extended Gauge models: W' → WZ
- → Heavy scalars: SM higgs like, EWK singlet, 2HDM, psuedo-scalar Higgs

In this talk, the following boosted results at 8 TeV are considered:

- WW, WZ, ZZ semi-leptonic → CMS-EXO-13-009, CERN-PH-EP-2014-076, arXiv:1405.3447 [hep-ex]
- **WW, WZ, ZZ fully hadronic** → *CMS-EXO-12-024, CERN-PH-EP-2014-071, arXiv:1405.1994 [hep-ex]*

NEW: combination X → VV analysis + model independent upper limit

Additional CMS analysis using W/Z boson jet:

- W/Z jet tagging in CMS
 → CMS-PAS-JME-13-006, http://cds.cern.ch/record/1577417?In=en
- Higgs like scalars decaying WW → CMS-PAS-HIG-13-008, https://cds.cern.ch/record/1546778

See more on boosted analysis using **W/Z** and **Top jets in Kevin Nash** talk

https://indico.cern.ch/event/302395/session/11/contribution/20

X → VV → di-jet final state search

- Search performed at 8 TeV, ~20 fb⁻¹
- Heavy resonance search, M > 1 TeV
- Hadronic W/Z bosons are highly boosted → merged into a single big R-cone jet
- Signal benchmarks :
- 1) q* → W/Z (excited quarks)
- 2) $G_{RS} \rightarrow WW/ZZ \rightarrow V_{T}$ bosons
- 3) $G_{bulk} \rightarrow WW/ZZ \rightarrow V_L$ bosons
- 4) W' → WZ (heavy partner of SM W)

X → VV → di-jet search: event selection

Signals:

Simulated by JHUGEN, Pythia 6 and Herwig++

Narrow resonances for the chosen k/M_{nl} value

Backgrounds:

QCD multijet events:

Herwig++

MG+Pythia6

Signature:

X → WW/WZ/ZZ → 2 W/Z jets

Kinematics:

Two high p₊ jets back-to-back

Merged Jet

Use jet substructure used to identify single jets containing the decay products of the hadronic W/Z

Online selection:

Two jet $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$, $|\Delta \eta_{jj}| < 1.3$, $M_{jj} > 890 \text{ GeV}$

Data-Driven

QCD multijet background extracted from data.
Simulation used only as a cross check

Offline selections:

Two leading CA8 jet considered as W/Z candidates

1) pruned mass [70,100] GeV

2) N-subjettiness ratio τ_2/τ_1 used to classify events:

 $\tau_2/\tau_1 < 0.5 \rightarrow \text{high purity} \quad \tau_2/\tau_1 \text{ in } [0.5, 0.75] \rightarrow \text{low purity}$

X → VV → di-jet search: mass spectrum

■ Background → extracted from data by means of a smoothing test

X → VV → semi-leptonic final state

- Heavy resonance search, M > 0.6 TeV
- Semi-leptonic WW, ZZ final states (μ,e)
- Hadronic W/Z bosons are highly boosted → merged into a single big R-cone jet
- ✓ Strategy: bump search in M_{vv}

Signal benchmark :

$$G_{bulk} \rightarrow WW/ZZ \rightarrow V_L bosons$$

theoretical cross section revisited \rightarrow 4 time smaller \rightarrow effect on exclusion

X → VV → semi-leptonic search: strategy

Signals:

Simulated by JHUGEN and Pythia 6

Backgrounds:

W+jet: MG+Pythia6 Herwig++

DY+jet: MG+Pythia6

tt : Powheg+Pythia6 mc@nlo+Herwig++

VV: Pythia6

Signature:

 $X \rightarrow WW \rightarrow I(\mu,e) + MET + W-jet$ $X \rightarrow ZZ \rightarrow 2I(\mu,e) + Z-jet$

Kinematics:

Two high p W or Z bosons back-to-back

Merged Jet

Use jet substructure to identify single jets containing decay products of hadronic W/Z

Online selection:

Single lepton high p_{τ} triggers, no isolation: $p_{\tau} > 40$ (80) GeV μ (e) **Di-lepton** triggers, no isolation: $p_{\tau} > 22$ (8) GeV $\mu\mu$, $p_{\tau} > 33$ GeV ee

Data-Driven

W+jet / DY+jet background extracted from data in the jet mass sideband

Offline selections:

Two or one isolated lepton (µ,e)

Leading CA8 jet taken as W/Z-jet candidate

W/Z jet tagging is consistent with di-jet analysis

(full description in the backup)

X → VV → semi-leptonic : background

After analysis selections, SM V+jets are main backgrounds

Minor contribution are taken from simulation + corrections from control regions

V-jets background is estimated from data using jet mass sideband control region

W+jets SB: m₁ [40,65] U [105,130] GeV **DY+jets SB:** m₁ [40,70] U [110,130] GeV

Overall normalization in signal region from jet mass data fit in the sidebands

Resonant contamination from VV and tt Low SB dominated by W+jets

Resonant contamination from VV

Low SB dominated by Z+jets

X → VV → semi-leptonic : M_{vv} spectrum

M_{vv} spectrum for l+ν+jet
Muon HP (left)
Electron HP (right)

M_{vv} spectrum for I+I+jet
Muon HP (left)
Electron HP (right)

X → VV searches: narrow bulk graviton

G_{bulk} → VV combination

- Combination: I+v+jet, I+I+jet and fully hadronic VV searches are combined together
- Correlated sys: V-tagging, luminosity, jet scale and resolution, lepton scale and resolution

Results:

I+ν+jet dominates in the range [800,2500] GeV \rightarrow gain ~20% with the combination No exclusion for k / M_{pl} < 0.5

X → VV : model independent limit

Reinterpretation: simplify the analysis → **drop LP** category and **merge lepton flavour**

Provide upper limits in terms of observed number of signal events

Reconstruction + selection efficiency for vector boson is evaluated

In this way, we can estimate excluded number of signal events for a generic model

Generic model is not restricted to narrow signals \rightarrow make a scan vs M_x and Γ_x

- ightarrow intrinsic line-shape supposed to be a Breit-Wigner with $\Gamma_{_{\rm X}}$
- → Resulting signal shape is a convolution between BW and resolution
- Vector boson efficiency \rightarrow provided as a function of V-kinematics (p_{τ} , η) and V-polarization
 - 1) Pre-select signal events applying all the acceptance cuts of the analysis (gen level)
 - 2) Reconstruction + identification efficiencies are evaluated for each vector boson in the event in a independent way
 - 3) All re-weighting applied to signal events are included in the efficiency calculation

X → VV : efficiency maps

■ Be careful in cases where V is transverse polarized → RS1 Graviton from MG+Pythia6 used

• Correlations among physics objects not considered → 15% extra systematics

All the efficiency maps are in the backup

X → VV: model independent result

- l+v+jet and l+l+jet not combined in order to avoid assumption on BR(G \rightarrow WW), BR(G \rightarrow ZZ)
- ullet Degradation of performance vs $oldsymbol{\Gamma}_{\mathbf{x}}$; large resonances fluctuation due to very broad shape

X → VV searches : conclusions

- Searches for X → VV in fully hadronic and semi-leptonic have been performed at 8 TeV
- Tools for tagging boosted W/Z bosons decaying hadronically have been widely used
- igoplus Combination among all the X \rightarrow VV searches in CMS for bulk graviton \rightarrow no exclusion
- Model independent re-interpretations of these results is now possible

Simplified upper limits provided in terms of excluded number of signal events vs M_x and Γ_x

Reconstruction + Selection efficiencies per **Vector Boson** provided in (p_{+},η) tables

For transverse polarized vector boson apply a flat k-factor of **0.85**

No excesses found at 8 TeV stay tuned for the next Run with 13 TeV data!

Performance in Run II: introduction

- ◆ Use CMS full-simulation @13 TeV, in time average pileup <PU> = 40
- Observables: AK8 jets + CHS with p_{τ} in [475,600] GeV used in this study

Trimming: k_T sub-jets, $R_{filt} = 0.1$ and $p_T^{frac} > 3\%$

Pruning: CA with R = 0.8 used for pruning, $z_{cut} = 0.1$ and $D_{cut} = 0.5$

N-subjettiness $(\tau_1, \tau_2, \tau_2/\tau_1)$ and Q-jet volatility

- → **Soft-Drop:** soft threshold $z_{cut} = 0.1$ and $\beta = [-1,0,1,2]$
- → CMS Q/G Likelihood: applied on both pruned jet and two leading pruned sub-jets
- → Constituent subtracted mass: pileup subtraction at single particle level
- \rightarrow C₂(β): double ratio of energy correlation function with $\beta = [0,0.5,1,2]$

Groomed masses are corrected for pileup by means of safe 4V subtraction

More on observables, data/MC, performance and correlation @8TeV in **Tobias** talk https://indico.cern.ch/event/302395/session/17/contribution/32

More on high p_{τ} performance for Run II in **Andreas** talk

https://indico.cern.ch/event/302395/session/10/contribution/18

V Tagging observables and correlations → CMS-JME-14-002, https://twiki.cern.ch/twiki/bin/viewauth/CMS/PhysicsResultsJME14002Draft

Mass variables performance

- ightharpoonup Train a single variable BDT, only leading jet with p₊ [475,600] GeV are considered
- Signal are W jets from RS Graviton decay, background from QCD Pythia8

Groomed mass compared w.r.t. raw one

Best performing

Interesting to look at ϵ_{sig} [70,80] %

Trimming, Pruning Soft drop $\beta = 1$

Pileup dependence?

substructure variables performance

Many sub-structure observables

Best performing

Interesting to look at ϵ_{sig} [70,80] %

 τ_2/τ_1 , Qjet, $C_2(\beta = 1.5)$, Q/G Like on sub-jet 2

Pileup dependence?

BDT performance: pairs

19/08/14 Raffaele Gerosa 19

BDT performance: triplets

19/08/14 Raffaele Gerosa 20

BDT performance vs pile-up

- **♦ BDT performance vs Pileup** → **percent ratio** of the previous maps
- ◆ Small effect is visible at single variable level; **20**% effect on the total combination

BDT Performance: summary plot

20

40

60

- Binned the events as a function of trimmed mass
- Consider a set of pairwise BDT combining trimmed mass + another variable
- ightharpoonup In each M_{trim} bin, make a ROC curve for the BDTs, taking the background efficiency for ε_{sig} = 50%
- **QGL** and τ_2/τ_1 are adding performance in the peaking part

 M_{trim} (GeV)

80

Performance in Run II: conclusions

- First look at V-tagging performance @13TeV with full CMS simulation
- ◆ Soft drop mass performs like pruning and trimming → many configuration of parameters have been tested
- New substructure observables have been tested:
 - → Q/G likelihood on pruned jet and sub-jet → looks promising !!
 - → **double ratio of ECF** can help in boost the V-tagging performance
- ightharpoonup Pile-up dependence looks under control for the investigated p_{τ} regime:
 - → worsening in the performance between 10-20 % when observables are combined
 - \rightarrow The bigger effect is visible on **Qjets volatility** and **C2(\beta)**

Backup slides

Single variable performances vs PU

ightharpoonup Train a single variable BDT, only leading jet with p₊ [475,600] GeV is used

Signal benchmark are W jets from RS Graviton (JHÜGen), background from QCD Pythia8

Groomed mass compared w.r.t. raw one

Best performing

Interesting to look at $\epsilon_{\rm sig}$ [70,80] %

Trimming, Pruning Soft drop $\beta = 1$

Pileup dependence??

Many sub-structure observables

Best performing

Interesting to look at ϵ_{sig} [70,80] % τ_2/τ_1 , Qjet, $C_2(\beta = 1.5)$,

Q/G Like on sub-jet 2

Pileup dependence??

BDT Correlation vs pile-up

- Compute linear correlation between single variable BDTs and full combination
- Look at the difference in the correlation between lower and higher pileup bins for S and B

BDT performance: pairwise

 $C_2(\beta=1.5)$ $C_2(\beta=1)$

Q/G sub 1 Q/G sub 2

 $\Gamma_{ ext{Qjets}}$

 $\mathbf{M}_{\mathsf{trim}}$

 $M_{soft}(\beta=1)$

 $C_2(\beta=1.5)$

Q/G sub 1 Q/G sub 2

BDT performance: triplets

high Pileup

Boosted W/Z performance JME-13-006

Boosted W/Z objects in CMS

So far CMS analysis used CA, R = 0.8 + charged hadron subtraction as "seed" forboosted W/Z decaying hadronically

- Two hard jets $p_{\tau} = [0.4,0.6] \text{ TeV } \bullet \text{ Low } p_{\tau} [0.25,0.35] \text{ TeV}$
- High production cross section
- QCD jet dominated

• q/g background sample

- contamination: tt, VV, DY
- ✓ Isolate W-jet sample in data
- Combinatorial bkg due to b-jet
- Nearby b-jet effect at high p₊

Beyond SM resonances are used as source of W jets

Boosted W/Z in CMS: performance

- CMS Simulation, \sqrt{s} = 8 TeV, W+jets $\begin{array}{c} \text{CA R=0.8} \\ \text{250} < p_{\tau} < 350 \, \text{GeV} \\ |\eta| < 2.4 \end{array} \begin{array}{c} \text{+} < \text{PU} > = 22 + \text{sim.} \\ \text{-} & \text{+} < \text{PU} > = 12 + \text{sim.} \\ \text{-} & \text{+} < \text{PU} > = 12 + \text{sim.} \\ \text{-} & \text{-} & \text{+} < \text{PU} > = 12 + \text{sim.} \\ \text{-} & \text{-} & \text{-} & \text{-} & \text{-} & \text{-} \\ \text{0.0} \end{array}$
- CMS Simulation, \s = 8 TeV, W+jets 250 < p., < 350 GeV 60 < m, < 100 GeV 0.6 Multi-Layer Perceptron (MLP) Likelihood τ√τ, pruned Jet charge (k = 1.0) W 0.8 0.6 $\boldsymbol{\epsilon}_{\text{sig}}$ CMS-JME-13-006

- ◆ Resolved jet from AK5 less efficient from p_⊤ > 200 GeV
- Overlap between boosted and resolved searches
- Pruning used improve S/B discrimination

$$Z_{cut} = 0.1, R_{cut} = 0.5$$

Best discrimination →
 Mass window [60,100] GeV

- **→ Mass window [60,100] GeV**
- Look at the performance of other substructure observables
- CMS Working Point:

Mass [60,100] GeV + τ_2/τ_1 < 0.5

Boosted W/Z in CMS: systematics

Worsening due to pileup w.r.t generator level

✓ W polarization has a big impact

Different angular and $p_{_{\! T}}$ sub-jet distributions

✓ Background composition q/g

Better rejection for q jets w.r.t gluons Mass cut reject more quarks ; τ_2/τ_1 gluons

Boosted W/Z in CMS: data analysis

W+iets MG+PYTHIA6

pass

Total data fit

tt Powheg+PYTHIA6

Data

..... MC fit bkg

Data fit bkg

GeV)

2

Events

150

100

50

CMS-JME-13-006

5 GeV

120

tī Powheg+PYTHIA6

W+jets MG+PYTHIA6

fail

····· Total MC fit

Total data fit

WW/WZ/ZZ

Data fit bkg

Data

····· MC fit bkg

Mistag rate in data vs p_T

Di-jet sample for M_{pr} and $M_{pr} + \tau_2/\tau_1$ Drop vs p_{τ} ; same for signal efficiency

• Mistag vs PU stable at 1% level

Semi-leptonic $t\bar{t}$ control sample Simultaneous fit to jet mass for event passing and failing $\tau_{3}/\tau_{1} < 0.5$

Shapes from MC matched/unmatched W-jet with Gen W

Parameter	Data	Simulation	Data/Simulation
$\langle m \rangle$	$84.1 \pm 0.4 {\rm GeV}$	$82.7 \pm 0.3 \mathrm{GeV}$	1.017 ± 0.006
σ	$8.4 \pm 0.6~\mathrm{GeV}$	$7.6 \pm 0.4\mathrm{GeV}$	1.11 ± 0.09

Di-jet search EXO-12-024

X → VV → di-jet: model independent

- Goal → estimate global event selection efficiency for signal using full simulated events
- **Contamination** → less than 1% from semi-leptonic WW/WZ and ZZ, 3% from ZZ \rightarrow qq ττ

Nominal Acceptance → includes matching and jet reconstruction efficiency

W/Z efficiency \rightarrow τ_{21} drops at high p_{T}

X → VV → di-jet search: W/Z tagging

- Background → as known Herwig++ agrees better than Pythia6 with data
- ightharpoonup Signal ightharpoonup different shapes due to parton shower, W/Z polarization and jet p_{τ}

X → VV → di-jet : systematic uncertainties

- Background → data driven extraction → one source associated to the method itself
- ♦ Signal → 1) W/Z tagging efficiency scale factor from tag & probe + larger p_{τ} extrapolation.
 - 2) Jet Energy Scale (JES) and Jet Energy Resolution (JER).
 - 3) Integrated luminosity.

Table 1: Summary of systematic uncertainties. The labels HP and LP refer to high-purity and low-purity event categories, respectively.

Source	Relevant quantity	LP uncertainty (%)	HP uncertainty (%)
Jet energy scale	Resonance shape	1	1
Jet energy resolution	Resonance shape	10	10 CMS-EXO-12-024
W-tagging	Efficiency (per jet)	7.5	54
Tagging p_T -dependence	Efficiency (per jet)	<4	<12
Pileup	Efficiency (per jet)	<1.5	<1.5
Integrated luminosity	Yield (per event)	2.6	2.6
PDF	Yield (per event)	5–15	5–15

X → VV → di-jet search: results

- HP and LP categories combined in one Likelihood → LHC CLs method to extract upper limit
- Background uncertainties are uncorrelated; Signal ones are fully correlated

Results:

Excited quarks decaying in qW , qZ are excluded till 3.2 and 2.9 TeV, respectively $G_{_{RS}} \rightarrow WW \ excluded \ up \ to \ 1.2 \ TeV \qquad W' \rightarrow WZ \ up \ to \ 1.7 \ TeV$ $G_{_{bulk}} \rightarrow WW, WZ, ZZ \ no \ mass \ limit \ up \ to \ now$

Lepton+jet search EXO-13-009

X → VV → semi-leptonic : event selection

- I + ν + jet → leptonic W mass constraint used to extract the neutrino $p_z^{\ \nu}$ Missing transverse energy forced to be a measurement of $p_T^{\ \nu}$ $p_T^{\ }$ > 50 (90) GeV μ (e) ; MET > 40 (80) GeV μ (e) ; $p_T^{\ W}$ > 200 GeV
- ♦ 2l + jet → $p_T > 40$ (20) GeV for leading (trailing) μ; $p_T > 40$ GeV ele; $p_T^W > 100$ GeV Two opposite charge lepton, M_{\parallel} in [70,110] GeV → kill top background
- → Hadronic W identification → same strategy adopted in di-jet searches

X → VV → semi-leptonic : systematics

- Background → normalization: 1) V+jets from limited statistics in the SB region < 10%</p>
 - 2) tt from correction derived from control region ~ 5-7%
 - 3) VV cross section uncertainty assigned to be **20%**
 - 4) V-tagging scale factor ~10% for HP category
 - \rightarrow V+jet shape: covariance matrix of the fits done in SB region and $\alpha_{MC}(M_{VV})$
- ◆ Signal → shape: 1) Jet Energy Scale and Resolution effect on signal width 3% (2%)
 - 2) Lepton scale and resolution give small effect on peak and width < 1%

→ normalization:

- 1) physics object uncertainties are assumed to be uncorrelated
- 2) Trigger and ID systematics from dedicated tag&probe studies (Z → II)
- 3) Luminosity from CMS measurement
- 4) PDF: MSTW and NNPDF

Source Analys		lysis		
//	$\ell \nu$ +V-jet	ℓℓ+V-jet		
Muons (trigger and ID)	2%	5%		
Muon scale	1%	2%		
Muon resolution	< 0.1%	0.5%		
Electrons (trigger and ID)	3%	3%		
Electron scale	< 0.5%	< 0.5%		
Electron resolution	< 0.1%	< 0.1%		
Jet scale	1-3%	1%		
Jet resolution	< 0.5%	<0.1%		
Unclustered energy scale	< 0.5%	_		
Pileup	0.5%	0.5%		
V tagging 9% (HP)				
PDF CMS-EXO-13-009 24% (LP) <0.5%				
Luminosity	2.6	5%		

X → VV → semi-leptonic : M_{vv} shape

V+jets shape in the signal region is extracted from data in the low jet mass sideband

Unbinned fit of data in the M_{vv} SB with a falling shape

Extrapolation function from simulation used to obtain the shape into the signal region

$$\alpha_{\rm MC}(m_{\rm VV}) = \frac{F_{\rm MC,SR}^{\rm V+jets}(m_{\rm VV})}{F_{\rm MC,SB}^{\rm V+jets}(m_{\rm VV})},$$

High mass SB not used to exclude contamination from possible VH signals

Final background estimation in the signal region

$$N_{\rm SR}^{\rm BKGD}(m_{\rm VV}) = C_{\rm SR}^{\rm V+jets} \times F_{\rm DATA,SB}^{\rm V+jets}(m_{\rm VV}) \times \alpha_{\rm MC}(m_{\rm VV}) + \sum_k C_{\rm SR}^k F_{\rm MC,SR}^k(m_{\rm VV}).$$

$$N_{SR}^{BKG} \rightarrow total background in SR as function of M_{VV}$$

$$C_{SR}^{V+jets} \rightarrow V+jets$$
 normalization from m_J fit to data

$$C_{SR}^{k} \rightarrow \text{ yields of minor background in SR}$$

$$e^{-x/(c_0+c_1x)}$$

Fitting Range:

- 1) $I+v+jet M_{vv}$ [700,3000] GeV
- 2) I+I+jet M_{VV} [500,2800] GeV

X → VV → semi-leptonic : acceptance

I+v+jet acceptance cuts

Object	Requirement
Muons	$ \eta < 2.1$
	$p_{\mathrm{T}} > 50\mathrm{GeV}$
Electrons	$ \eta < 2.5$
	$p_{\mathrm{T}} > 90\mathrm{GeV}$
$\sum \vec{p}_{T,\nu}$ (Muon ch.)	$p_{\mathrm{T}} > 40\mathrm{GeV}$
$\sum \vec{p}_{T,\nu}$ (Electron ch.)	$p_{\mathrm{T}} > 80\mathrm{GeV}$
$W \rightarrow \ell \nu$ or $W \rightarrow \tau \nu \rightarrow \ell \nu \nu \nu$	$p_{\mathrm{T}}^{\mathrm{W}} > 200\mathrm{GeV}$
$W \to q \overline{q}'$	$ \eta_{ m W} < 2.4$
	$p_{\mathrm{T}}^{\mathrm{W}} > 200\mathrm{GeV}$
	$65 < m_{q\bar{q}'} < 105 \text{GeV}$
WW system	$700 < m_{WW} < 3000 \text{GeV}$
	$\Delta R(W_{q\overline{q}'},\ell) > \pi/2$
	$\Delta \phi(W_{q\overline{q}'}, \sum \vec{p}_{T,\nu}) > 2$
	$\Delta \phi(W_{q\overline{q}'}, W_{\ell\nu}) > 2$

I+I+jet acceptance cuts

Object	Requirement
Muons	$ \eta < 2.4$
	$p_{\mathrm{T}} > 20\mathrm{GeV}$
Highest-p _T muon	$p_{\mathrm{T}} > 40\mathrm{GeV}$
Electrons	$ \eta < 2.5$
	$p_{\mathrm{T}} > 40\mathrm{GeV}$
$Z o \ell \ell$	$p_{\mathrm{T}}^{\mathrm{Z}} > 80\mathrm{GeV}$
	$70 < m_{\ell\ell} < 110\mathrm{GeV}$
$Z o q \overline{q}$	$ \eta_{ m Z} < 2.4$
	$p_{\mathrm{T}}^{\mathrm{Z}} > 80\mathrm{GeV}$
	$70 < m_{ m q\overline{q}} < 110{ m GeV}$
ZZ system	$500 < m_{\rm ZZ} < 2800{\rm GeV}$

X → VV → semi-leptonic : efficiency WW

X → VV → semi-leptonic : efficiency ZZ

Additional B2G searches

T(2/3) quark search

Signal:

Simulated by MG+Pythia6

Model:

exotic T(2/3) coupled with gluons

NNLO cross section calculated via **HATHOR**

Signature:

 $T(2/3) \rightarrow bW$ or tZ or tH \rightarrow no specific BR are assumed $T\overline{T} \rightarrow single lepton or multi-lepton final states$

Offline selection:

CA8 used to look for top-jets, $p_T > 200$ GeV passing CMS combined Top Tagger Important for $T \rightarrow tZ$ and tH events

For hadronic W identification, CA8 $p_T > 200 \text{ GeV}$ pruned mass [65,105] GeV + N-subjettines $\tau_2/\tau_1 < 0.5 \rightarrow$ **Important for T** \rightarrow **bW events**

Event classified in **Single lepton** and **Multi-Lepton** channels

Backgrounds

SM W+jets, Z+jets, ttW, ttZ, tt, single-top, WW, WZ, ZZ and ttH

T(2/3) quark search: single lepton

- At least three jets with $p_{_T} > 120$, 90 and 50 GeV ; $\Delta R(j,l) > 0.3$ and $|\eta| < 2.4$
- At least one W-jet with $p_{_{\rm T}}$ > 35 GeV ; $E_{_{\rm T}}^{\rm miss}$ > 20 GeV

W+jets and tt background normalized to data inverting the W-jet requirements

BDT analysis to separate T-quark from SM backgrounds (tt, W and Z+jets)

One dedicated training for each $M_{\scriptscriptstyle T}$ and for events with or without W-jet

Inputs:
$$N_{iet}$$
, N_{biet} , H_T , E_T^{miss} , lepton p_T , p_T^{3rd} , p_T^{4th}

T(2/3) quark search: multi lepton

- Divided into 4 exclusive samples asking $p_{T}(lep) > 20 \text{ GeV}$, $M_{II} > 20 \text{ GeV}$ $E_{T}^{miss} > 20 \text{ GeV}$
 - → lepton charge : opposite sign, same sign + at least one b-jet
 - → **opposite sign** is divided according to the **number of jets** in the event

OS1
$$\rightarrow$$
 dominated by $T\overline{T} \rightarrow bWbW$: M_Z veto, $M_{lb} > 170$ GeV, $N_{jet} = 2$ or 3, $H_T > 300$ GeV

OS2 →
$$N_{iet} > 5$$
, 2 b-tagged jet, $H_{\tau} > 500$ GeV and $S_{\tau} > 1$ TeV → sensitive to events with a Z

SS
$$\rightarrow$$
 events with T in tZ or tH, $N_{jet} > 3$, $H_{\tau} > 500$ GeV, $S_{\tau} > 700$ GeV

- 1) SM process with same-sign leptons have small XS → taken from MC
- 2) Wrong charge measurement → muon negligible, electron fake rate weight method
- 3) Fake lepton background from dedicated data control sample

Channel	OS1	OS2	SS	Trileptons
tt	5.2 ± 1.9	80 ± 12	_	_
Single top quark	2.5 ± 1.3	2.0 ± 1.0	_	_
Z	9.7 ± 2.9	2.5 ± 1.9	_	_
tŧŧW	_	_	5.8 ± 1.9	0.25 ± 0.11
tīZ	_	_	1.83 ± 0.93	1.84 ± 0.94
WW	_	_	0.53 ± 0.29	_
WZ	_	_	0.34 ± 0.08	0.40 ± 0.21
ZZ	_	_	0.03 ± 0.00	0.07 ± 0.01
WWW/WWZ/ZZZ/WZZ	_	_	0.13 ± 0.07	0.08 ± 0.04
tŧŧWW	_	_	_	0.05 ± 0.03
Charge misidentification	_	_	0.01 ± 0.00	_
Non-prompt	_	_	7.9 ± 4.3	0.99 ± 0.90
Total background	17.4 ± 3.7	84 ± 12	16.5 ± 4.8	3.7 ± 1.3
Data	20	86	18	2

T(2/3) quark search: results

- Single lepton uses BDT discriminant observed in data to build the bayesian posterior
- Multi-lepton use a cut and count approach

Results:

Mass limits between 687 and 782 GeV as a function of all the BR combination Analysis more sensitive to tZ mode

T(5/3) quark search

Signals:

Simulated by MG+Pythia6

Model:

exotic T(5/3) not coupled with gluons

Signature:

 $TT \rightarrow 2t + 2W \rightarrow 2W+2b+2W$ Di-lepton (e,µ) same-sign final state

Offline selection:

CA8 used to look for top-jets, $p_{T} > 400$ GeV passing CMS combined top tagger

For hadronic W identification, CA8 $p_{\tau} > 200 \text{ GeV}$ pruned mass [65,105] GeV + N-subjettines $\tau_2/\tau_1 < 0.5$

At least two same-sign leptons with $p_{_T} > 30$ GeV, $\Delta R(t,l) > 0.8$ $M_{_{||}} < 76$ && $M_{_{||}} > 106$ GeV, $H_{_{T}} > 900$ GeV $N_{_{jet}} > 5 \rightarrow each$ AK5 counts 1, W jet counts 2 and Top jet counts 3

Backgrounds

SM tt \rightarrow due to large cross section , ttW, ttWW, ttZ, WWW and same-sign WW, WZ, ZZ Backgrounds due to **mis-charge** reconstruction \rightarrow from charge **fake rate using data** Backgrounds due to **fake lepton** reconstruction are estimated from data

T(5/3) quark search: results

• H₊ template is used to extract an upper bound on T(5/3) production cross section

Results:

 $T(5/3) \rightarrow tt \ W^{\dagger}W^{-} \rightarrow 2l + X \ with \ BR(T(5/3) \rightarrow tW) = 100\% \ excluded \ up to 830 \ GeV$ Sensitivity gain at high mass due to sub-structure is ~ [15,20]%

Vector-like quark search

Signal:

Simulated by MG+Pythia6 with different BR combination

Model:

Charged -1/3
Predicted by little h,
composite Higgs,
extra dimension

Signature:

b' \rightarrow tW,bZ or bH, search for b' \overline{b} ' decaying in a final state with: one charged lepton from W, >= 4 jet, >= 1 b-jet, MET

Offline selection:

CA8 used to look for V or H jets, $p_{T} > 200 \text{ GeV}$

Pruned Mass [50,150] GeV, mass drop < 0.4, matched at least with one AK5 jet ΔR < 0.5

4 AK5 jets with $p_T > 200,60,40,30$ GeV and at least one of them, not matched with CA8, must be b-tagged

Event Categorization: 0, 1 or >= 2 V-jet found

Backgrounds

SM tt, single-top, W+jets, Z+jets, WW/WZ/ZZ → scale factor correction from data applied

QCD multi-jet extracted from **data** fitting the **MET** distribution, obtained inverting **lepton Iso** with a conservative systematics of 100%

Vector-like quark search: spectrum

 $_{ullet}$ S $_{_{\!\! o}}$ is the best discriminating variable defined as the scalar sum of AK5 $\,$ jet, lepton and MET

Binned template likelihood simultaneously fitting all the different categories

• Main background is SM tt, all the other are put in only one template in the final fit

Vector-like quark search: results

Results:

Benchmark scenario → observed mass limit at 700 GeV

Analysis more sensitive to tW mode because it goes to 1 and 2 V-tag category

Shaded region means expected sensitivity less than 500 GeV